Giải phương trình
4x mũ 4 - 11x mũ 2 + 6 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^4-11x^2+6=0\)
\(\Leftrightarrow4x^4-8x^2-3x^2+6=0\)
\(\Leftrightarrow4x^2\left(x^2-2\right)-3\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(4x^2-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\\4x^2-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{2}\\x=\pm\sqrt{\frac{3}{4}}\end{cases}}\)
\(S=\left\{\pm\sqrt{2};\pm\sqrt{\frac{3}{4}}\right\}\)
nếu có sai bn thông cảm nha
b \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
hay \(x\in\left\{0;2\right\}\)
c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>x=2 hoặc x=1
e: \(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
=>x(x-5)(x-6)=0
hay \(x\in\left\{0;5;6\right\}\)
b: \(\Leftrightarrow x\left(x^3-2x^2+10x-20\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
hay \(x\in\left\{0;2\right\}\)
c: \(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
=>(x-8)(3x+2)=0
hay \(x\in\left\{8;-\dfrac{2}{3}\right\}\)
d: \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
=>x=1 hoặc x=2
a: ĐKXĐ: x>=-2
\(PT\Leftrightarrow3\cdot3\sqrt{x+2}=\dfrac{1}{2}\cdot2\sqrt{x+2}+16\)
=>\(9\sqrt{x+2}-\sqrt{x+2}=16\)
=>\(8\sqrt{x+2}=16\)
=>\(\sqrt{x+2}=2\)
=>x+2=4
=>x=2
b: ĐKXĐ: \(x\in R\)
\(5+\sqrt{x^2-4x+4}=9\)
=>\(\left|x-2\right|=4\)
=>x-2=4 hoặc x-2=-4
=>x=6 hoặc x=-2
b. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
-Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Đặt \(a=x^2\)
\(\Rightarrow4a^2-11a+6=0\)
ta có: \(\Delta=11^2-4.4.6=121-96=25>0\)
=> Phương trình có 2 nghiệm phân biệt: \(a1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{11+\sqrt{25}}{2.4}=\frac{16}{8}=2\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
\(a2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{11-\sqrt{25}}{2.4}=\frac{6}{8}=\frac{3}{4}\)\(\Leftrightarrow x^2=\frac{3}{4}\Leftrightarrow x=\pm\sqrt{\frac{3}{4}}\)
\(\frac{3}{5}-\sqrt{16}+\sqrt{0,16}+\sqrt{\frac{3}{52}}-\sqrt{\left(-5,5\right)^2}\)