Tính x, y, z, t biết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: áp dụng tính chất dãy tỉ số bằng nhau ta được:
(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(a+b+c)=(a+b+c)/(a+b+c0=1
Do đó: (a+b+c)/c=1 suy ra a+b+c=c suy ra a+b=c-c=0 nên a=b (1)
(b+c-a)/a=1 suy ra b+c-a=a suy ra a+c-a=a (b=a) suy ra c=a (2) Từ (1) và(2) ta có: a=b=c
Suy ra:P= (1+b/a).(1+c/b).(1+a/c)=(1+a/a).(1+a/a).(1+a/a)=(1+1).(1+1).(1+1)=2.2.2=8
Bài 2: bạn cũng áp dụng tính chất dãy tỉ bằng nhau rồi xét giống bài 1 là ra
cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU
a)\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{5}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{49}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{49}=\dfrac{z^2}{25}=\dfrac{x^2-y^2+z^2}{9-49+25}=\dfrac{-60}{-15}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.9=36\\y^2=4.49=196\\z^2=4.25=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm14\\z=\pm10\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}5x=2y\\3y=5z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{5}\\\dfrac{y}{5}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y+z}{2+5+3}=\dfrac{-60}{10}=-6\)
\(\Rightarrow\left\{{}\begin{matrix}x=-6.2=-12\\y=-6.5=-30\\z=-6.3=-18\end{matrix}\right.\)
Thứ nhất câu a thiếu nghiệm
Thứ 2 câu b ko sai đề
Để tránh bạn ấy chép bài bạn => sai thì mk sẽ xóa bạn,bạn đồng ý chứ?
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{y+x+t}=\frac{t}{x+y+z}=\frac{x+y+z+t}{2\left(x+y+z+t\right)}=\frac{1}{2}\)
=>2x=y+z+t
2y=x+z+t
2z+x+y+t
2t=x+y+z
=>x+y=2(z+t)(1)
y+z=2(x+t)(2)
z+t=2(x+y)(3)
t+x=2(y+z)(4)
Thay 1;2;3 và 4 vào P
=>P=2+2+2+2=8
bài 2 tương tự
Làm rồi nhưng olm không hiện.Hướng dẫn thôi nha.
Cộng 1 vào mỗi vế của giả thiết.Rồi chia tất cả các vế của giả thiết cho x + y + z +t khác 0.
Ta sẽ được: \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{t}\Rightarrow x=y=z=t\)
Đến đây thay vào M: y,z,t bởi x ta sẽ thu được kết quả.
a) Ta có: \(5x=8y=20z.\)
=> \(\frac{x}{8}=\frac{y}{20}=\frac{z}{5}\) và \(x-y-z=3.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{8}=\frac{y}{20}=\frac{z}{5}=\frac{x-y-z}{8-20-5}=\frac{3}{-17}=\frac{-3}{17}.\)
\(\left\{{}\begin{matrix}\frac{x}{8}=\frac{-3}{17}\Rightarrow x=\left(-\frac{3}{17}\right).8=-\frac{24}{17}\\\frac{y}{20}=\frac{-3}{17}\Rightarrow y=\left(-\frac{3}{17}\right).20=-\frac{60}{17}\\\frac{z}{5}=\frac{-3}{17}\Rightarrow z=\left(-\frac{3}{17}\right).5=-\frac{15}{17}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-\frac{24}{17};-\frac{60}{17};-\frac{15}{17}\right).\)
Chúc bạn học tốt!
a, Theo đề bài ta có:
\(5x=8y=20z\Rightarrow\frac{x}{5}=\frac{y}{8}=\frac{z}{20}\)
Và \(x-y-z=3\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{8}=\frac{z}{20}=\frac{x-y-z}{5-8-20}=\frac{3}{-23}=-\frac{3}{2}\)
\(\left\{{}\begin{matrix}\frac{x}{5}=-\frac{3}{2}\Rightarrow x=-\frac{3}{2}.5=-\frac{15}{2}\\\frac{y}{8}=-\frac{3}{2}\Rightarrow y=-\frac{3}{2}.8=-12\\\frac{z}{20}=-\frac{3}{2}\Rightarrow x=-\frac{3}{2}.20=-30\end{matrix}\right.\)
Vậy x = \(-\frac{15}{2};y=-12;z=-30\)