Rút gọn biểu thức (a-b)(a^2+ab+b^2)
(a+b)(a^2-ab+b^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a + b + c = 0 , ta có :
\(A=\frac{ab}{a^2+b^2-c^2}\)\(+\frac{bc}{b^2+c^2-a^2}\)\(+\frac{ca}{c^2+a^2-b^2}\)
\(\Leftrightarrow\frac{ab}{\left(a+b\right)^2-2ab-c^2}\)\(+\frac{bc}{\left(b+c\right)^2-2ab-a^2}\)\(+\frac{ca}{\left(c+a\right)^2-2ca-b^2}\)
\(\Leftrightarrow A=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}\)\(+\frac{bc}{\left(b+c-a\right)\left(b+c+a\right)-2ab}\)\(+\frac{ac}{\left(a+c+b\right)\left(c+a-b\right)-2ca}\)
\(\Leftrightarrow A=\frac{ab}{-2ab}\)\(+\frac{bc}{-2bc}\)\(+\frac{ac}{-2ac}\)
\(\Leftrightarrow A=\frac{-1}{2}\)\(+\frac{-1}{2}\)\(+\frac{-1}{2}\)
\(\Leftrightarrow A=\frac{-3}{2}\)
- Phân tích ra nhân tử :
\(a^3+b^3+c^3-3abc=a^3+b^3+c^3+3a^2b-3ab^2+3ab^2-3ab^2-3abc\)\(=a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Từ đây ta có \(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(\Rightarrow A=a+b+c\)
\(B=\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)
\(=\left(\dfrac{a-b}{a\left(a+b\right)}-\dfrac{a}{b\left(a+b\right)}\right):\left(\dfrac{b^3}{a\left(a-b\right)\left(a+b\right)}+\dfrac{1}{a+b}\right)\)
\(=\dfrac{b\left(a-b\right)-a^2}{ab\left(a+b\right)}:\dfrac{b^3+a\left(a-b\right)}{a\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{ab-b^2-a^2}{ab\left(a+b\right)}\cdot\dfrac{a\left(a-b\right)\left(a+b\right)}{a^2-ab+b^3}\)
\(=\dfrac{\left(a-b\right)\left(ab-b^2-a^2\right)}{b\left(a^2-ab+b^3\right)}\)
\(=\dfrac{-\left(a-b\right)\left(a^2-ab+b^2\right)}{b\left(a^2-ab+b^3\right)}\)
Đề lỗi rồi chứ mình ko rút gọn đc nữa
\(\left(a-b\right)\left(a^2+ab+b^2\right)=a\left(a^2+ab+b^2\right)-b\left(a^2+ab+b^2\right)\)
\(=a^3+a^2b+ab^2-a^2b-ab^2-b^3\)
\(=a^3-b^3\)
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a\left(a^2-ab+b^2\right)+b\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=a^3+b^3\)
(a-b)(a^2+ab+b^2)=a^3-b^3
(a+b)(a^2-ab+b^2)=a^3+b^3