K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2020

\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}=-\frac{3\left(x+6\right)}{2x+10}=-\frac{3x+18}{2x+10}\)

\(\frac{x^2-4}{x^2-9}\cdot\frac{3x+9}{x+2}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{3\left(x+3\right)}{x+2}=\frac{3\left(x-2\right)}{x-3}\)

\(\frac{x^3-8}{5x+20}\cdot\frac{x^2+4x}{x^2+2x+4}=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}\cdot\frac{x\left(x+4\right)}{x^2+2x+4}=\frac{x\left(x-2\right)}{5}\)

\(\frac{4x+12}{\left(x+4\right)^2}:\frac{3x+9}{x+4}=\frac{4\left(x+3\right)}{\left(x+4\right)^2}\cdot\frac{x+4}{3\left(x+3\right)}=\frac{4}{3\left(x+4\right)}\)

5 tháng 3 2020

\(\frac{3x-7}{5}=\frac{2x-1}{3}\)

\(\Leftrightarrow9x-21=10x-5\)

\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)

\(\frac{4x-7}{12}-x=\frac{3x}{8}\)

\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)

\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)

\(\Leftrightarrow-56-64x=36x\)

\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)

5 tháng 3 2020

\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)

\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)

Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0

Vậy x = 2019

\(\frac{5x-8}{3}=\frac{1-3x}{2}\)

\(\Leftrightarrow10x-16=3-9x\)

\(\Leftrightarrow19x=19\Leftrightarrow x=1\)

14 tháng 2 2020

\(ĐKXĐ:x\ne\pm2\)

\(\frac{x}{x+2}+\frac{6}{2-x}=\frac{3x-12}{x^2-4}\)

\(\Leftrightarrow\frac{x}{x+2}-\frac{6}{x-2}-\frac{3x-12}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x-2\right)-6\left(x+2\right)-\left(3x-12\right)}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2-2x-6x-12-3x+12=0\)

\(\Leftrightarrow x^2-11x=0\)

\(\Leftrightarrow x\left(x-11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-11=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=11\end{cases}}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{0;11\right\}\)

15 tháng 2 2020

\(ĐKXĐ:x\ne\pm2\)

\(\frac{x}{x+2}+\frac{6}{2-x}=\frac{3x-12}{x^2-4}\)

\(\Leftrightarrow\frac{x}{x+2}+\frac{-6}{x-2}-\frac{3x-12}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{-6\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3x-12}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x-2\right)-6\left(x+2\right)-\left(3x-12\right)}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x\left(x-2\right)-6\left(x+2\right)-\left(3x-12\right)=0\)

\(\Leftrightarrow x^2-2x-6x-12-3x+12=0\)

\(\Leftrightarrow x^2-11x=0\)\(\Leftrightarrow x\left(x-11\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=11\end{cases}}\)( thoả mãn \(ĐKXĐ\))

Vậy tập nghiệm của phương trình là \(S=\left\{0;11\right\}\)

23 tháng 1 2017

Ta có: \(\frac{x}{x^2+x+1}=\frac{1}{4}\Leftrightarrow4x=x^2+x+1\Leftrightarrow x^2-3x+1=0\)

\(A=\frac{\left(x^5-3x^4+x^3\right)+\left(3x^4-9x^3+3x^2\right)+\left(5x^3-15x^2+5x\right)+\left(12x^2-36x+12\right)+21x}{\left(x^4-3x^3+x^2\right)+\left(3x^3-9x^2+3x\right)+\left(15x^2-45x+15\right)+42x}\)

\(A=\frac{21x}{42x}=\frac{1}{2}\)