K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

M N P Q S A R B

a) Vẽ PB ⊥ MR

Vậy tam giác MPQ và RPQ có chung đường cao PB

Vì Q là trọng tâm của ΔMNR nên MQ = 2QR

Ta có : 

\(S\Delta MPQ=\frac{1}{2}MQ.PB=\frac{1}{2}.2QR.PB=QR.PB\) 

\(S\Delta RPQ=\frac{1}{2}QR.PB\) 

Vậy \(\frac{S\Delta MPQ}{S\Delta RPQ}=\frac{QR.PB}{\frac{1}{2}QR.PB}=2\) 

b) Vẽ NA ⊥ MR

Vậy NA là đường cao của ΔMNQ đồng thời là đường cao của ΔRNQ.

Vì Q là trọng tâm của ΔMNP nên MQ = 2QR

Ta có :

\(S\Delta MNQ=\frac{1}{2}MQ.NA=\frac{1}{2}.2QR.NA=QR.NA\) 

\(S\Delta RNQ=\frac{1}{2}QR.NA\) 

Vậy \(\frac{S\Delta MNQ}{S\Delta RNQ}=\frac{QR.NA}{\frac{1}{2}QR.NA}=2\) 

c) \(\Delta NRA=\Delta PRB\) => NA=PB

Ta có :\(S\Delta RPQ=\frac{1}{2}QR.PB=\frac{1}{2}QR.NA=S\Delta RNQ\) 

Vậy SΔRPQ = SΔRNQ

- Từ kết quả câu a) ta có:

    SΔQPM = 2SΔPRQ = SΔQNP (do câu c) (*)

- Từ kết quả câu b) ta có:

    SΔQMN = 2SΔRNQ = SΔQNP (**)

Từ (*) và (**) suy ra:

    SΔQMN = SΔQNP = SΔQPM (đpcm) 

19 tháng 4 2017
Giải bài 67 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 67 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 67 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

19 tháng 4 2017

a) Vì Q là trọng tâm của ∆MNP nên điểm Q thuộc đường trung tuyến MR và MQRQ=2MQRQ=2.

Vì hai tam giác ∆MPQ và ∆RPQ có chung đường cao kẻ từ P nên :

SΔMPQSΔRPQ=MQRQ=2SΔMPQSΔRPQ=MQRQ=2 (1)

b) Chứng minh tương tự như câu (a) ta có :

SΔMPQSΔRPQ=2(2)SΔMPQSΔRPQ=2(2)

c) Hai tam giác ∆PQR và ∆QNR có chung đường cao kẻ từ Q và PR = RN nên S∆PQR = S∆QNR

Vì S∆PQR + S∆QNR = S∆PQN

Nên S∆PQN = 2.S∆PQR = 2.S∆QNR (3)

Từ (1), (2), (3) => S∆QMN = S∆QNP = S∆QPM



3 tháng 10 2019

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

=>\(S_{ABD}=\dfrac{3}{4}\cdot S_{ACD}\)

d: Ta có: \(\dfrac{BD}{CD}=\dfrac{3}{4}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)

e: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=192/20=9,6(cm)

22 tháng 4 2022

bn tham khảo ạ

undefined

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 12^2+16^2=20cm

c: AD là phân giác

=>BD/CD=AB/AC=3/4

=>S ABD/S ACD=3/4

d: BD/CD=3/4

=>BD/3=CD/4

mà BD+CD=10

nên BD/3=CD/4=10/7

=>BD=30/7cm; CD=40/7cm