K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

Vì:  \(a^{2018}+b^{2018}=a^{2019}+b^{2019}\)

    \(\Leftrightarrow a^{2019}-a^{2018}+b^{2019}-b^{2018}=0\)

     \(\Leftrightarrow a^{2018}\left(a-1\right)+b^{2018}\left(b-1\right)=0\)      (1)

Vì   \(a^{2019}+b^{2019}=a^{2020}+b^{2020}\)

     \(\Leftrightarrow a^{2020}-a^{2019}+b^{2020}-b^{2019}=0\)

     \(\Leftrightarrow a^{2019}\left(a-1\right)+b^{2019}\left(b-1\right)=0\)     (2)

Từ (1) và (2)

\(\Rightarrow a^{2018}\left(a-1\right)+b^{2018}\left(b-1\right)=a^{2019}\left(a-1\right)+b^{2019}\left(b-1\right)\)

\(\Leftrightarrow a^{2019}\left(a-1\right)-a^{2018}\left(a-1\right)+b^{2019}\left(b-1\right)-b^{2018}\left(b-1\right)=0\)

\(\Leftrightarrow a^{2018}\left(a-1\right)\left(a-1\right)+b^{2018}\left(b-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow a^{2018}\left(a-1\right)^2+b^{2018}\left(b-1\right)^2=0\)

Vì:  \(\hept{\begin{cases}a^{2018}\left(a-1\right)^2\ge0\\b^{2018}\left(b-1\right)^2\ge0\end{cases}}\) mà tổng của 2 số này lại là 0

=> Mỗi số hạng này sẽ có tổng là 0

Ta có:

\(a^{2018}\left(a-1\right)^2=0\Leftrightarrow\orbr{\begin{cases}a^{2018}=0\\a-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}}\)

Tương tự với b thì cũng có: b = 0, b = 1

Vậy có 4 cặp a,b thỏa mãn:

(a,b) ={ (0,0) ; (0,1) ; (1,0) ; (1,1)

Vậy tổng của a + b có thể là 0,1,2

        

6 tháng 6 2018

Ta có:

\(a^{2018}+b^{2018}+a^{2020}+b^{2020}=2a^{2019}+2b^{2019}\)

\(\Leftrightarrow\left(a^{2018}-2a^{2019}+a^{2020}\right)+\left(b^{2018}-2b^{2019}+b^{2020}\right)=0\)

\(\Leftrightarrow a^{2018}\left(a-1\right)^2+b^{2018}\left(b-1\right)^2=0\)

Ta thấy rằng VT \(\ge\)0 nên dấu = xảy ra khi

\(\left(a,b\right)=\left(0,0;0,1;1,0;1,1\right)\)

18 tháng 10 2018

mình đang cần gấp sắp đến giờ học ở trung tâm rồi ! không có bài mình chết chắc . nhanh lên giùm mình nha!thanks you.

18 tháng 10 2018

chỉ còn 1 tiếng nữa thôi đó!

{a22​=a1​.a3​a32​=a2​.a4​​\Rightarrow{a2a3=a1a2a3a4=a2a3{a2a3=a1a2a3a4=a2a3⇒{a3​a2​​=a2​a1​​a4​a3​​=a3​a2​​​\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}⇒a2​a1​​=a3​a2​​=a4​a3​​

\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)⇒a23​a13​​=a33​a23​​=a43​a33​​=a2​a1​​.a3​a2​​=a4​a3​​=a4​a1​​(1)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)a23​a13​​=a33​a23​​=a43​a33​​=a23​+a33​+a43​a13​+a23​+a33​​(2)

Từ (1) và (2) \Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)⇒a23​+a33​+a43​a13​+a23​+a33​​=a4​a1​​(đpcm)

24 tháng 10 2021

Thì nha ko phải thìa 😅

24 tháng 10 2021

Mà a1/a2018 thay bằng a1/a2021 nha 😅

15 tháng 7 2021
Giúp mình với =(^•-•^)=
1 tháng 2 2017

Đáp án :-5