K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

Ta có a/b=3/8 

=> a=3/8*b (1)

Lại có d=2a-5b/5a-2b  (2)

Từ (1) và (2) => 2a-5b =3/4 *b-5b =  -17/4 *b;

                        5a-2b = 15/8 *b -2b = -1/8*b ;

=> d= 34

7 tháng 6 2018

cảm ơn bn :D

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

3 tháng 4 2016

ak thôi k cần nữa mk bt giải rùi :v

13 tháng 10 2021

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

Ta có: \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)

\(\Rightarrow\frac{2a+b+c}{a}-1=\frac{a+2b+c}{b}-1=\frac{a+b+2c}{c}-1\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Mà \(a,b,c\ne0\)

=> a = b= c

\(A=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

      \(=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}\)

        \(=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}\)

          \(=2+2+2=6\)

6 tháng 11 2016

có a+b/b=k=>a+b=b.k=>b.k/b=k

     c+d/d=k=>c+d=d.k=>d.k/d=k

=>a+b/b=c+d/d

22 tháng 12 2016

a^2-2ab-3b^2=0

=>a^2-3ab+ab-3b^2=0

=>a(a-3b)+b(a-3b)=0

=>(a+b)(a-3b)=0

mà a,b khác 0 => a+b khác 0

=>a-3b=0

=>a=3b

Thay vào A ta được:

A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)

=(7.3b+2b)/(2.3b+b)+(9.3b-5b)/(2.3b-b)

=23b/7b+22b/5b=23/7+22/5=......

14 tháng 1 2017

ta có:a-2ab-3b2=0

=>a2-3ab+ab-3b2=0

=>a(a-3b)+b(a-3b)=0

=>(a+b)(a-3b)=0

vìa,b khác 0=>a-3b=0

=>a=3b

thay vào A ta được:

A=(7.3b+2b)/(2.3b+b)+9=(9.3b-5b)/(2.3b-b)

  =23b/7b+22b/5b

  =23/7+22/5

  =269/35

Vậy A=269/35

26 tháng 4 2020

a)

\(a>b\\ \Leftrightarrow2a>2b\\ \Rightarrow2a+4>2b+4\)

b)

\(a>b\\ \Leftrightarrow-2a>-2b\\ \Rightarrow7-2a>7-2b\)