1) Cho :
A= 1/(1.2)+1/(3.4)+1/(5.6)+...+1/(9.10) va B= 1/(6.10)+1/(7.9)+1/(8.8)+1/(7.9)+1/(10.6)
Tinh A:B
2) Cho P= (1/2).(3/4).(5/6). ... .(99/100). CMR: 1/15< P<1/10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{9.10}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{10}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{10}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)\)
\(\Rightarrow A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
\(\Rightarrow A=\left(\frac{1}{6}+\frac{1}{10}\right)+\left(\frac{1}{7}+\frac{1}{9}\right)+\frac{1}{8}\)
\(\Rightarrow A=\left(\frac{10}{6.10}+\frac{6}{6.10}\right)+\left(\frac{9}{7.9}+\frac{7}{7.9}\right)+\frac{8}{8.8}\)
\(\Rightarrow A=\frac{16}{6.10}+\frac{16}{7.9}+\frac{8}{8.8}\)
\(\Rightarrow A=8\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right)\)
Ta lại có:
\(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\)
\(\Rightarrow B=\left(\frac{1}{6.10}+\frac{1}{6.10}\right)+\left(\frac{1}{7.9}+\frac{1}{7.9}\right)+\frac{1}{8.8}\)
\(\Rightarrow B=\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\)
Vậy :
\(A:B=8\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right):\left(\frac{2}{6.10}+\frac{2}{7.9}+\frac{1}{8.8}\right)=8\)
Vậy \(A:B=8\)
A = 1/1.2 + 1/3.4 + 1/5.6 + 1/7.8 + 1/9.10
A = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 - 1/8 + 1/9 - 1/10
A = ( 1 + 1/3 + 1/5 + 1/7 + 1/9) - ( 1/2 + 1/4 + 1/6 + 1/8 + 1/10)
A = ( 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10) - 2.( 1/2 + 1/4 + 1/6 + 1/8 + 1/10)
A = ( 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10) - ( 1 + 1/2 + 1/3 + 1/4 + 1/5)
A = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
B = 1/6.10 + 1/7.9 + 1/8.8 + 1/9.7 + 1/10.6
16B = 16/6.10 + 16/7.9 + 16/8.8 + 16/9.7 + 16/10.6
16B = 1/6 + 1/10 + 1/7 + 1/9 + 1/8 + 1/8 + 1/9 + 1/7 + 1/10 + 1/6
16B = 2.( 1/6 + 1/7 + 1/8 + 1/9 + 1/10)
8B = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
Ta có A = 8B
=> A : B = 8
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{2}-\frac{1}{10}\)
\(A=\frac{2}{5}\)
Ta có : $16A=\dfrac{16}{6.10}+\dfrac{16}{7.9}+\dfrac{16}{8.8}+\dfrac{16}{9.7}+\dfrac{16}{10.6}$
$=>16A=\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{7}+\dfrac{1}{10}+\dfrac{1}{6}$
$=>16A=2.(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10})$
$=>A=\dfrac{1}{8}(dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10})$
\(A=\dfrac{1}{6.10}+\dfrac{1}{7.9}+\dfrac{1}{8.8}+\dfrac{1}{9.7}+\dfrac{1}{10.6}\)
\(16A=\dfrac{16}{6.10}+\dfrac{16}{7.9}+\dfrac{16}{8.8}+\dfrac{16}{9.7}+\dfrac{16}{10.6}\)
\(16A=\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{7}+\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{7}+\dfrac{1}{10}+\dfrac{1}{6}\)
\(16A=2\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\)
\(A=2:16\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\)
\(A=\dfrac{1}{8}\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}\right)\left(đpcm\right)\)