Tìm x biết
3 x + 1 = 9x
2 3x +2 = 4 x +5
2 x + 2 - 2x =96
7 x + 2 + 2. 7 x - 1 = 343
Giup1 mk nha mai hok rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 9x2 - 6x - 3 = 0
<=> 3(3x2 - 2x - 1) = 0
<=> 3(3x2 - 3x + x - 1) = 0
<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)
<=> 3(3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
b. (2x + 1)2 - 4(x + 2)2 = 9
<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)
<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9
<=> -3(4x + 5) = 9
<=> 4x + 5 = -3
<=> 5 + 3 = -4x
<=> -4x = 8
<=> -x = 2
<=> x = -2
a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2-4=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)
c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
1) 52-|x-3|=80
<=> |x-3|=28
<=> x-3=28 hoặc x-3=-28
<=> x=31 hoặc x=-25
Đáp số x= 31 hoặc x=-25
2) x*(x+2)=0
<=> x=0 hoặc x+2=0
<=> x=0 hoặc x=-2
vậy .......
A = 5 + \(\frac{15}{4}\)|3x+7| + 3
Vì |3x+7| lớn hơn hoặc bằng 0 Với mọi x
=>|3x+7| + 3 lớn hơn hoặc bằng 0 + 3 Với mọi x
=> \(\frac{15}{4}\)|3x+7| + 3 lớn hơn hoặc bằng 3 Với mọi x
=>5 + \(\frac{15}{4}\)|3x+7| + 3 lớn hơn hoặc bằng 5 + 3 Với mọi x
hay C lớn hơn hoặc bằng 8
Dấu = xảy ra <=> |3x+7| = 0
<=> 3x + 7 = 0
<=> 3x = 0 + 7
<=> 3x = 7
<=> x = 7 : 3
<=> x = \(\frac{7}{3}\)
Vậy biểu thức A đạt GTLN bằng 8 tại x =\(\frac{7}{3}\)
xong rùi đó
\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(4\left(x-2\right)+10=5-3x\)
\(\Rightarrow4x-8+10=5-3x\)
\(\Rightarrow4x+3x=5-10+8\)
\(\Rightarrow7x=3\)
\(\Rightarrow x=\frac{3}{7}\)
\(4x-8-10=7-x\)
\(\Rightarrow4x+x=7+10+8\)
\(\Rightarrow5x=25\)
\(\Rightarrow x=5\)
\(\left|2x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\(\left|1-2x\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)
\(\left|4+x\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}4+x=10\\4+x=-10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-14\end{cases}}}\)
\(3^{x+1}=9^x\)
\(\Leftrightarrow3^{x+1}=3^{2x}\)
\(\Leftrightarrow x+1=2x\)
\(\Leftrightarrow x+1=x+x\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
\(2^{3x+2}=4^{x+5}\)
\(\Leftrightarrow2^{3x+2}=2^{2x+10}\)
\(\Leftrightarrow3x+2=2x+10\)
\(\Leftrightarrow3x=2x+8\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
\(2^{x+2}-2^x=96\)
\(\Leftrightarrow2^x.2^2-2^x.1=96\)
\(\Leftrightarrow2^x\left(2^2-1\right)=96\)
\(\Leftrightarrow2^x.3=96\)
\(\Leftrightarrow2^x=\frac{96}{3}\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
Chờ xíu nha ⏳