K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.1) Tính so đo góc AMB2) Chứng minh EH song song với BC3) Chứng minh AFEK nội tiếp4) Chứng minh...
Đọc tiếp

Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.

1) Tính so đo góc AMB

2) Chứng minh EH song song với BC

3) Chứng minh AFEK nội tiếp

4) Chứng minh I là trung điểm của AE

5)AD cắt CE tại I. Chứng minh CI đi qua trung điểm của HJ

6)Vẽ đường kính CP, CB cắt AD tại O', MO' cắt AB tại N. Chứng minh P,N,D thẳng hàng

7)AD cắt CO tại S, BS cắt AC tại Q. Chứng minh QC.QM=QS.QB

8)Chứng minh PNCE là hình thoi và góc NPE = 45o, CN là phân giác của OCP

9)CD cắt AB tại L. Chứng minh LN.LO=LP.LA và NB.AL=NA.BL

10)CN cắt AD tại V. Chứng minh VL,DN,CB đồng quy

0
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
15 tháng 11 2023

 Gọi T là giao điểm của CD và AB. Khi đó xét tứ giác ACHT, ta có:

O (trung điểm AC), D (giao điểm của 2 đường chéo) và B (giao điểm của 2 đường thẳng chứa 2 cạnh đối) thẳng hàng nên ACHT là hình thang. (bổ đề hình thang quen thuộc)

 \(\Rightarrow\) HT//AC \(\Rightarrow\) H, K, T thẳng hàng.

 Lại có \(\widehat{CEH}=\widehat{CAH}\) (góc nội tiếp cùng chắn cung AH)

 Mà \(\widehat{CAH}=\widehat{B}\) (cùng phụ với góc C)

 \(\Rightarrow\widehat{CEH}=\widehat{B}\)

 \(\Rightarrow\) Tứ giác BTEH nội tiếp \(\Rightarrow\widehat{BEH}=\widehat{BTH}\)

Mà \(\widehat{BTH}=90^o\) nên \(\widehat{BEH}=90^o\). Ta có đpcm.