cho tam giác ABC vuong tại A có AB =5cm AC=12 dường cao AH
1)tính BC ,AH
2)gọi D và E lần lượt là hình chiếu của H trên AB và AC. cmr : diện tíchtam giác ADE=sin2 B.sin2C.dien tích tam giac ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH=góc ADH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
=>ΔADH đồng dạng với ΔAHB
c: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông
∆AHC và ∆AHB ta có:
AE.AC = A H 2 = AD.AB => ∆AHC ~ ∆AHB(c.g.c)
b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm
Trong ∆AHB vuông ta có:
tan A B C ^ = A H H B => A B C ^ ≈ 56 0 , S A D E = 27 13 c m 2
1,
+, tính BC
\(BC^2=AB^2+AC^2\Rightarrow BC^2=5^2+12^2=25+144=169\)
\(\Rightarrow BC=\sqrt{169}=13\left(cm\right)\)
+, Tính AH
\(AH\cdot BC=AB\cdot AC\Rightarrow AH=\frac{AB\cdot AC}{BC}=\frac{5\cdot12}{13}=\frac{60}{12}\left(cm\right)\)