Cho hình chóp đều SABCD có cạnh đáy bằng a căn 2 cạnh bên bằng 2a. Gọi O là tâm của đáy , gọi lần lượt I,J là trung điểm của BC,AD.
a)Chứng minh : mp (SBC) vuông mp(SIJ)
b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD)
c) Tính khoảng cách giữa 2 đường thẳng AD và SB
a, \(\left\{{}\begin{matrix}BC\perp\left(SIJ\right)\\BC\in\left(SBC\right)\end{matrix}\right.\Rightarrow\left(SBC\right)\perp\left(SIJ\right)\)
b, \(OC=\dfrac{1}{2}AC=\dfrac{1}{2}.\dfrac{AD}{sin45^o}=a\)
Góc giữa SC và (ABCD) là \(\widehat{SCO}\)
\(cosSCO=\dfrac{OC}{SC}=\dfrac{a}{2a}=\dfrac{1}{2}\Rightarrow\widehat{SCO}=60^o\)
c, Kẻ JK vuông góc với SI tại K.
\(d\left(AD;SB\right)=d\left(I;\left(SBC\right)\right)\)
\(=JK\)
\(=IJ.sinSIO\)
\(=IJ.\dfrac{SO}{SI}\)
\(=IJ.\dfrac{\sqrt{SC^2-OC^2}}{SI}\)
\(=a\sqrt{2}.\dfrac{a\sqrt{3}}{2a}=\dfrac{\sqrt{6}}{2}a\)