K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2020

\(x^2-5mx-4m=0\)

Xét \(\Delta=25m^2+16m>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x< -\frac{16}{25}\\x>0\end{matrix}\right.\)

Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=-4m\end{matrix}\right.\)

Vì x1 và x2 là nghiệm pt nên

\(x_1^2-5mx_1-4m=0\Leftrightarrow x_1^2=5mx_1+4m\)

\(x_2^2-5mx_2-4m=0\Leftrightarrow x_2^2=5mx_2+4m\)

\(A=\frac{m^2}{5mx_1+16m+5mx_2}+\frac{5mx_2+16m+5mx_1}{m^2}\)

\(=\frac{m^2}{5m.5m+16m}+\frac{5m.5m+16m}{m^2}\)

\(=\frac{m}{25m+16}+\frac{25m+16}{m}\)

Tự giải tiếp

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Đề thiếu thông tin phương trình.

25 tháng 3 2019

thiếu cho phương trình x2-5mx-4m=0 nữa

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

13 tháng 5 2016

bạn khai triển \(x_1^2+x_2^2-x_1x_2-3=\left(x_1+x_2\right)^2-3x_1x_2-3\)

khúc -3x1x2 -3 là mình làm tắt, thực ra là hằng đẳng thức đấy, mà tại mình cộng cái -x1x2 dô luôn nên ra -3x1x2. xong rồi bạn cứ thay vào rồi làm tiếp. =)))

3 tháng 8 2021

\(\Delta=4m^2-4m+1-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

Do đó pt luôn có nghiệm

Theo định lí Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

Lại có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)           

\(A=4m^2-4m+1-4m+4\)

\(A=4m^2-8m+5\)

\(A=4\left(m-1\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\) m=1

Tick hộ nha 😘

3 tháng 8 2021

pt có nghiệm \(< =>\Delta\ge0\)

\(< =>[-\left(2m-1\right)]^2-4\left(2m-2\right)\ge0\)

\(< =>4m^2-4m+1-8m+8\ge0\)

\(< =>4m^2-12m+9\ge0\)

\(< =>4\left(m^2-3m+\dfrac{9}{4}\right)\ge0\)

\(=>m^2-2.\dfrac{3}{2}m+\dfrac{9}{4}\ge0< =>\left(m-\dfrac{2}{3}\right)^2\ge0\)(luôn đúng)

=>pt luôn có 2 nghiệm 

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m-1\\x1x2=2m-2\end{matrix}\right.\)

\(A=\left(x1+x2\right)^2-2x1x2=\left(2m-1\right)^2-2\left(2m-2\right)\)

\(A=4m^2-4m+1-4m+4=4m^2+5\ge5\)

dấu"=" xảy ra<=>m=0

1 tháng 4 2019

\(\Delta'=b'^2-ac=\left[-\left(m-2\right)\right]^2-1.\left(m^2+2m-3\right)=-6m+7\)

Để pt có 2 no thì \(\Delta'>0\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)

Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{matrix}\right.\)

Mặt khác: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\Leftrightarrow5\left(x_1+x_2\right)=x_1.x_2\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)\left(5-x_1.x_2\right)=0\)

Do đó: \(2\left(m-2\right)\left(5-m^2-2m+3\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\left(loại\right)\\m=-4\end{matrix}\right.\)

Vậy khi m=-4 thì thỏa mãn...