K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả 

19 tháng 11 2019

Chọn B.

22 tháng 2 2018

9 tháng 1 2018

Đáp án B

Ta có  P = 2 x 3 + y 3 - 3 x y = 2 x + y x 2 - x y + y 2 - 3 x y = 2 x + y 2 - x y - 3 x y

Mặt khác  x 2 + y 2 = 2 ⇔ x + y 2 - 2 x y = 2 ⇔ 2 x y = x + y 2 - 2 ≤ x + y 2 2 ⇔ - 2 ≤ x + y ≤ 2

Khi đó   2 P = 2 x + y 4 - 2 x y - 6 x y = 2 x + y 4 - x + y 2 + 2 - 3 x + y 2 - 2

= 6 + 12 x + y - 3 x + y 2 - 2 x + y 3 = f t = 6 + 12 t - 3 t 2 - 2 t 3

Với   t = x + y ∈ - 2 ; 2

Xét hàm số f t = 6 + 12 t - 3 t 2 - 2 t 3  trên đoạn [-2;2] ta có

f ' t = 12 - 6 t - 6 t 2 ; f ' t = 0 ⇔ [ t = - 2 t = 1

So sánh các giá trị f(-2);f(1);f(2), ta được  m a x - 2 ; 2 f t = f 1 = 13 ⇒ M = 13 2 .

15 tháng 2 2018

Đáp án C

G T ⇔ x 2 + y − 3 x + y 2 − 4 y + 4 = 0 y 2 + x − 4 y + x 2 − 3 x + 4 = 0

có nghiệm  ⇔ Δ x ≥ 0 Δ y ≥ 0 ⇔ 0 ≤ x ≤ 4 3 1 ≤ y ≤ 7 3

Và:

x y = 3 x + 4 y − x 2 − y 2 − 4 ⇒ P = 3 x 3 + 18 x 2 + 45 x − 8 ⏟ f x + − 3 y 3 + 3 y 2 + 8 y ⏟ g y

 Xét hàm số f x = 3 x 3 + 18 x 2 + 45 x − 8 trên  0 ; 4 3 ⇒ max 0 ; 4 3 f x = f 4 3 = 820 9

Xét hàm số g x = − 3 y 3 + 3 y 2 + 8 y trên  1 ; 7 3 ⇒ max 1 ; 7 3 g x = f 4 3 = 80 9

Vật P ≤ max 0 ; 4 3 f x + max 1 ; 7 3 g x = 100

Dấu “=” xảy ra khi  x = y = 4 3

28 tháng 11 2018

Đáp án B

22 tháng 8 2019

19 tháng 9 2018

Đáp án C.

Phương pháp giải: Dựa vào giả thiết, đánh giá đưa về tổng các bình phương, từ biểu thức P đưa về hạng tử trong tổng bình phương và áp dụng bất đẳng thức Bunhiacopxki tìm giá trị lớn nhất.

Lời giải:

Vì x2 + y2 > 1 suy ra  log x 2 + y 2 f ( x )  là hàm số đồng biến trên tập xác định

Khi đó 

Xét biểu thức P, ta có 

Áp dụng BĐT Bunhiacopxki, có