Cho tam giác ABC cân tại A.. Trên cạnh AB lấy điểm D. trên cạnh AC lấy điểm E sao cho AD = AE .
a)C/M rằng BE = CD.
b)Gọi O là giao điểm của BE và CD.C/m OB=OC
c) C/m AO là đường trung trực của đoạn thẳng BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Xét Δ ADC và Δ AEB
Ta có : AD = AE (gt)
AC = AB (Δ ABC cân tại A)
\(\widehat{DAC}=\widehat{EAB}\) (góc chung)
=> Δ ADC = Δ AEB (c.g.c)
b, Ta có : Δ ADC = Δ AEB (cmt)
=> \(\widehat{ACD}=\widehat{ABE}\)
a)Xét △ABE và △ACD có
AB = AC ( △ABC cân tại A)
AD = AE (gt)
\(\widehat{A}\) là góc chung
=> △ABE = △ACD (c-g-c)
=> BE = CD ( e cạnh tương ứng)
b) Vì △ABE = △ACD
nên \(\widehat{ABE}=\widehat{ACD}\)
c)
Vì \(\widehat{ABC}=\widehat{ABE}+\stackrel\frown{EBC}\)
\(\text{}\widehat{ACB}=\widehat{ACD}+\widehat{DCB}\)
mà \(\widehat{ABE}=\widehat{ACD}\)
\(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=> △KBC là tam giác cân tại K
b: Xét tứ giác BEDC có
A là trung điểm của BD
A là trung điểm của EC
Do đó: BEDC là hình bình hành
Suy ra: BE//CD
a) Xét tam giác ABE và tam giác ADC:
AE=AC(theo gt tam giác ABC cân )
góc A chung
AE=AD(theo gt)
=> Tam giác ABE=tam giác ADC(c.g.c)
nên BE=CD(dpcm)
b) Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng)
c) Xét Tam giác DKB và tam giác EKC
góc DKB=góc EKC(đối đỉnh)
AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC
góc DBK= góc ECK
=>tam giác DKB=tam giác EKC(g.c.g)
=>KB=KC(2 cạnh tương ứng)
=>tam giác KBC là tam giác cân .
a) Xét \(\Delta\) BAE và \(\Delta\) CAD có:
AB = AC ( \(\Delta\) ABC cân tại A )
BAE = CAD ( chung góc A )
AD = AE ( giả thiết )
.=> \(\Delta\) BAE = \(\Delta\) CAD ( c . g . c ) (1)
=> BE = CD ( 2 cạnh tương ứng )
Vậy BE = CD ( đpcm)
b) Ta có: \(\Delta\) BAE = \(\Delta\) CAD ( chứng minh (1) )
=> ABE = ACD ( 2 góc tương ứng )
Vậy ABE = ACE ( đpcm )
c) Ta có: \(\Delta\) ABC cân tại A ( giả thiết )
=> ABC = ACB ( tính chất tam giác cân )
hay DBC = ECB (2)
Xét \(\Delta\) DBC và \(\Delta\) ECB có:
CD = BE ( chứng minh a)
DBC = ECB ( chứng minh (2) )
BC là cạnh chung
=> \(\Delta\) DBC = \(\Delta\) ECB ( c . g . c )
=> DCB = EBC ( 2 góc tương ứng )
hay KCB = KBC
Xét \(\Delta\) KBC có: KCB = KBC
=> \(\Delta\) KBC cân tại K
Vậy \(\Delta\) KBC cân tại K
Chuk bn hk tốt !
a) Xét tam giác BEA và tam giác DCA có:
+ AE = AC (gt).
+ AB = AD (gt).
+ \(\widehat{BAE}=\widehat{DAC}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác BEA = Tam giác DCA (c - g - c).
b) Tam giác BEA = Tam giác DCA (cmt).
\(\Rightarrow\) \(\widehat{ABE}=\widehat{ADC}\) (2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
\(\Rightarrow\) BE // CD (dhnb).
c) Xét tam giác BEC có:
+ A là trung điểm của EC (AE = AC).
+ M là trung điểm của BE (gt).
\(\Rightarrow\) AM là đường trung bình của tam giác BEC.
\(\Rightarrow\) AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(1\right)\)
Xét tam giác CDB có:
+ A là trung điểm của BD (AD = AB).
+ N là trung điểm của CD (gt).
\(\Rightarrow\) AN là đường trung bình của tam giác CDB.
\(\Rightarrow\) AN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) \(\Rightarrow\) AM = AN (cùng = \(\dfrac{1}{2}\) BC).
a, Xét tam giác ABE và tam giác ACD
AB = AC
AE = AD
^A _ chung
Vậy tam giác ABE = tam giác ACD (c.g.c)
=> BE = CD ( 2 cạnh tương ứng )
=> ^ABE = ^ACD ( 2 góc tương ứng )
b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC
Xét tam giác KBD và tam giác KCE có
^BKD = ^CKE ( đối đỉnh )
^KBD = ^KCE (cmt)
BD = CE (cmt)
Vậy tam giác KBD = tam giác KCE (g.c.g)
c, Xét tam giác ABH và tam giác ACH có
^B = ^C
AH _ chung
AB = AC
Vậy tam giác ABH = tam giác ACH ( c.g.c )
=> ^BAH = ^CAH ( 2 góc tương ứng )
=> AH là đường phân giác
hay AK là đường phân giác
d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao
hay AK vuông BC
e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)
a) Xét ΔABE vuông tại A và ΔACD vuông tại A có
AB=AC(ΔABC vuông cân tại A)
AE=AD(gt)
Do đó: ΔABE=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: BE=CD(Hai cạnh tương ứng)
a.Xét tam giác DBC và tam giác ECB có:
DB=EC (AB=AC và AD=AE)
góc ABC = góc ACB (cân tại A)
BC là cạnh chung
Do đó tam giác DBC = tam giác ECB (c.g.c)
Suy ra BE= CD (ĐPCM)
a) Xét tam giác ABE và tam giác ACD có :
AB = AC ( tam giác Abc cân tại A )
AE = AD
Chung \(\widehat{BAC}\)
\(\Rightarrow\) tam giác ABE = tam giác ACD ( c-g-c )
\(\Rightarrow\hept{\begin{cases}BE=CD\left(đpcm\right)\\\widehat{ABE}=\widehat{ACD}\end{cases}}\)
Mà \(\widehat{ABE}+\widehat{OBC}=\widehat{ACD}+\widehat{OCB}\)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
\(\Rightarrow\) tam giác COB cân tại O \(\Rightarrow OB=OC\left(đpcm\right)\)
c) Xét tam giác AOB và tam giác AOC có :
AB = AC
BO = CO
Chung AO
\(\Rightarrow\) tam giác AOB = tam giác AOC ( c-c-c )
\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)
\(\Rightarrow\) OC là tia phân giác \(\widehat{BAC}\)(1)
Mà tam giác ABC cân tại A (2)
Từ (1) và (2) \(\Rightarrow\)AO là trung trực BC
C/M là gì.Cậu viết tắt tớ khong làm được đâu