K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Bài 1 :

\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)

                 \(=a-b+c-d-a+c\)

                 \(=-\left(b+d\right)=VP\)

\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)

                 \(=a-b-c+d+b+c\)

                 \(=a+d=VP\)

\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

31 tháng 12 2017

đề bài này bạn xem lại nhé, cứ thử cho n là số lẻ => 3n+1 là số chẵn => 3n+1 chia hết cho 2 

mà 4n luôn chia hết cho 2 với n là số nguyên 

=> 4n và 3n+1 có ước chung là 2 với n lẻ 

=> 4n và 3n+1 nguyên tố cùng nhau á ???

31 tháng 12 2017

sorry ấn lộn phải là 2n+4 và 3n+8

29 tháng 10 2015

a) Giả sử ƯCLN(a;2a-1)=d. Khi đó a và 2a-1 cùng chia hết cho d, suy ra 2a-(2a-1)=1 chia hết cho d hay d=1 và ƯCLN(a;2a-1)=1 nên (a;2a-1) là nguyên tố cùng nhau với bất ký a thuộc N (đpcm)

b) Giả sử ƯCLN(a;6a-1)=d. Khi đó a và 6a-1 cùng chia hết cho d, suy ra 6a-(6a-1)=1chia hết cho d hay d=1 và ƯCLN(a;6a-1)=1 nên (a;6a-1) là nguyên tố cùng nhau với bất ký a thuộc N (đpcm)

29 tháng 3 2018

Vì a,b,c là 3 cạnh tam giác nên a,b,c là 3 số dương 
À mà bạn biết tính chất này chứ a/(a+b+c)<a/(b+c) (Cộng vào mẫu a dương nên nhỏ hơn) 
a/(b+c)<(a+a)/(a+b+c)=2a/(a+b+c) (Cộng cả tử với mẫu với a) 
=> Ta có: a/(a+b+c)<a/(b+c)<2a/(a+b+c) (1) 
Tương tự với b: b/(a+b+c)<b/(a+c)<2b/(a+b+c) (2) 
Tương tự với c: c/(a+b+c)<c/(a+b)<2c/(a+b+c) (3) 
Cộng (1) với (2) và (3) ta được đpcm 
1< a/(b+c) + b/(a+c) + c/(a+b) <2

bạn chỉ cần làm tương tự thôi

30 tháng 3 2018

thank bn nha