Cho hình vuông ABCD và 2018 đường thẳng có cùng tính chất chia hình vuông thành 2 tứ giác có tỉ số diện tích là 2/3. CMR: có ít nhất 505 đường thẳng trong 2018 đưởng thẳng đồng qui.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 1 đường thẳng d bất kì (trong 13 đường thẳng nói trên) cắt BC tại M và AD tại N sao cho \(\dfrac{S_{ABMN}}{S_{DCMN}}=\dfrac{2}{5}\)
Gọi E là trung điểm AB và F là trung điểm CD, d cắt EF tại G
\(\dfrac{S_{ABMN}}{S_{DCMN}}=\dfrac{\dfrac{1}{2}\left(BM+AN\right).AB}{\dfrac{1}{2}\left(CM+DN\right).AB}=\dfrac{BM+AN}{CM+DN}=\dfrac{2}{5}\)
Mặt khác do E, F là trung điểm AB, CD \(\Rightarrow EG\) là đường trung bình hình thang ABMN và FG là đường trung bình hình thang DCMN
\(\Rightarrow BM+AN=2EG\) ; \(CM+DN=2FG\)
\(\Rightarrow\dfrac{2EG}{2FG}=\dfrac{2}{5}\Rightarrow\dfrac{EG}{FG}=\dfrac{2}{5}\)
Hay G là điểm cố định nằm trên đoạn EF (cố định) chia đoạn EF theo tỉ lệ 2:5
Do tính đối xứng của hình vuông \(\Rightarrow\) có 4 điểm có tính chất tương tự G
Hay mọi đường thẳng trong 13 đường thẳng nói trên đều phải đi qua ít nhất 1 trong 4 điểm loại G
Theo định lý Dirichlet, tồn tại ít nhất \(\left[\dfrac{13}{4}\right]+1=4\) đường thẳng cùng đi qua 1 điểm