Cho góc nhọn xOy. Điểm H nằm trên đường phân giác góc xOy. Từ H dựng các đường vuông góc với 2 cạnh Ox, Oy.
a) Chứng minh tam giác HAB cân
b) Gọi D là hình chiếu của A trên Oy, C là giao điểm của AD và OH. Chứng minh BC vuông góc với Ox
c) Khi góc xOy = 60 độ,OH=4cm.Tính độ dài OA
a) Xét tam giác OHA và tam giác OHB có :
\(\widehat{AOH}=\widehat{BOH}\) ( OH là tia phân giác góc xOy )
\(\widehat{HAO}=\widehat{HBO}\left(=90^o\right)\)
Chung OH
\(\Rightarrow\) tam giác AOH = tam giác BOH ( ch - gn )
\(\Rightarrow HA=HB\)
\(\Rightarrow\) HAB là tam giác cân tại H
b) Gọi giao điểm của AB với OH là K
Ta có tam giác AOH = tam giác BOH ( câu a )
\(\Rightarrow OA=OB\)
\(\Rightarrow\)tam giác AOB cân tại O
Lại có OK là phân giác \(\widehat{AOB}\)
\(\Rightarrow\) OK là đường cao của tam giác AOB
Mặt khác AD là đường cao tam giác AOB \(\left(AD\perp OB\right)\)
OK và AD cắt nhau tại C
\(\Rightarrow\) C là trực tâm tam giác AOB
\(\Rightarrow BC\perp OA\)
Mà \(A\in Ox\)
Vậy \(BC\perp Ox\)
c) Ta có : \(\widehat{AOH}=\widehat{BOH}=\frac{\widehat{xOy}}{2}=\frac{60^o}{2}=30^o\)
Xét tam giác OAH vuông tại A có \(\widehat{AOH}=30^0\)
\(\Rightarrow\) \(AH=\frac{1}{2}OH\) ( cạnh đối diện với góc 30 độ bằng nửa cạnh huyền )
\(\Rightarrow AH=2cm\)
Áp dụng định lý Pi-ta-go cho tam giác AOH vuông tại A ta được :
\(AO^2+AH^2=OH^2\)
\(\Leftrightarrow AO^2+4=16\)
\(\Leftrightarrow AO^2=12\)
\(\Leftrightarrow AO=\sqrt{12}\left(cm\right)\)
Vậy khi góc xOy = 60 độ , OH = 4cm thì \(OA=\sqrt{12}cm\)