chứng minh:(2007^2008-2007^2001)=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2007^{2008}=\left(2007^4\right)^{502}=\left(...1\right)^{502}=\left(...1\right)\)
\(2007^{2001}=\left(2007^4\right)^{500}.2007=\left(...1\right)^{500}.2007=\left(...7\right)\)
Vậy
Ta có
A = 112009 + 112008 + 112007 +.....+112001 + 112000
A = ( 112009 + 112008 + 112007 + 112006 + 112005) + (112004 + 112003 + 112002 + 112001 + 112000)
A = 112005(114 + 113 + 112 + 111 + 1) + 112000(114 + 113 + 112 + 111 + 1)
A = 112005.16015 + 112000.16105
=> A \(⋮\) 5
=> đpcm
Tk nha
ta có :
A=112009 + 112008 + ... + 112001 + 112000 ( có 10 số hạng )
A=(112009 + 112008 + 112007 + 112006 + 112005) + (112004 + 112003 + 112002 + 112001 + 112000) (có 2 nhóm)
A= 112005(114+113+112+11+1)+ 112000(114+113+112+11+1)
A=112005.16105+112000.16105
\(\Rightarrow A⋮5\)
đpcm
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>\frac{2001}{2001}+\frac{2002}{2002}+\frac{2003}{2003}+\frac{2004}{2004}+\frac{2005}{2005}+\frac{2006}{2006}+\frac{2007}{2007}+\frac{2008}{2008}\)
\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>1+1+1+1+1+1+1+1\)\(A=\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)
\(A>8\)
=1+1/2001+1+1/2002+1+1/2003+...+1+1/2008=8+1/2001+1/2002+1/2003+...+1/2008>8
\(\frac{2002}{2001}+\frac{2003}{2002}+\frac{2004}{2003}+\frac{2005}{2004}+\frac{2006}{2005}+\frac{2007}{2006}+\frac{2008}{2007}+\frac{2009}{2008}>8\)