K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2017^2}-1\right)\left(\frac{1}{2018^2}-1\right)\)

\(A=\frac{\left(1-2^2\right)\left(1-3^2\right)\left(1-4^2\right)...\left(1-2018^2\right)}{2^23^24^2...2018^2}\)

\(A=\frac{-1\cdot3\cdot\left(-2\right)\cdot4\cdot\left(-3\right)\cdot5\cdot...\cdot\left(-2016\right)\cdot2018}{2018!^2}\)

\(A=\frac{2016!\cdot3\cdot4\cdot5\cdot...\cdot2018}{2018!^2}=\frac{2016!\cdot2018!}{2018!^2\cdot2!}=\frac{2016!}{2!2018!}=\frac{1}{2!\cdot2017\cdot2018}>0>-\frac{1}{2}=B\)

7 tháng 9 2018

A = (1/2+1)(1/2-1)(1/3+1)(1/3-1)....(1/2018+1)(1/2018-1) đặt các tích phần tử có dấu + là X, tích các phần tử có dấu - là Y => A= X.Y

X = 3/2.4/3.5/4.....2019/2018 = 2019/2

Y= (-1/2)(-2/3)(-3/4)...(-2017/2018) = -1/2018 (tích của 2017 số <0)

A= X.Y = -2019/2018.1/2 < B= -1/2

7 tháng 9 2018

Ta có:

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)

\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)

\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)

\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)

\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)

\(A=\frac{1.2018}{2017.2}\)

\(A=\frac{1009}{2017}\)

Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)

           \(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)

Vậy A>B

12 tháng 7 2018

a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)

b, c cùng 1 câu phải k

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)

\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)

15 tháng 7 2018

A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)

NHA

HỌC TỐT

23 tháng 8 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)..........\left(\frac{1}{2018^2}-1\right)\)

Ta có :

\(\frac{1}{2^2}-1>-\frac{1}{2}\)

\(\frac{1}{3^2}-1>-\frac{1}{2}\)

...........

\(\frac{1}{2018^2}-1>\frac{1}{2}\)

\(\Rightarrow A>B\)

1 tháng 5 2018

Bài 1:

ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

Bài 2:

ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Học tốt nhé bn !!

15 tháng 5 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2018^2}-1\right)\)

\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2018^2}\right)\)

\(-A=\frac{3}{2\cdot2}\cdot\frac{8}{3\cdot3}\cdot...\cdot\frac{4072323}{2018\cdot2018}\)

\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\cdot...\cdot\left(2017\cdot2019\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\cdot...\cdot\left(2018\cdot2018\right)}\)

\(-A=\frac{\left(1\cdot2\cdot...\cdot2017\right)\left(3\cdot4\cdot...\cdot2019\right)}{\left(2\cdot3\cdot...\cdot2018\right)\left(2\cdot3\cdot...\cdot2018\right)}\)

\(-A=\frac{1\cdot2019}{2018\cdot2}\)

\(-A=\frac{2019}{4036}\)

\(A=-\frac{2019}{4036}< -\frac{1}{2}\)

19 tháng 5 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2018^2}-1\right)\)

\(\Rightarrow A=\left(\frac{1}{2^2}-\frac{2^2}{2^2}\right)\left(\frac{1}{3^2}-\frac{3^2}{3^2}\right)...\left(\frac{1}{2018}-\frac{2018^2}{2018^2}\right)\)

\(\Rightarrow A=\frac{-3}{2^2}.\frac{-8}{3^2}....\frac{-4072323}{2018^2}\)

\(\Rightarrow\frac{-\left(3.8.....4072323\right)}{\left(2.3.4...2018\right).\left(2.3.4..2018\right)}\)

\(\Rightarrow A=\frac{-\left(1.3.2.4....2017.2019\right)}{\left(2.3.4...2018\right)\left(2.3.4..2018\right)}\)

\(\Rightarrow A=\frac{-\left(\left(1.2.3...2017\right).\left(3.4.5..2019\right)\right)}{\left(2.3...2018\right)\left(2.3.4..2018\right)}\)

\(\Rightarrow A=\frac{-2019}{2018.2}< -\frac{2018}{2018.2}=\frac{-1}{2}\)

\(\Rightarrow A< \frac{-1}{2}\)

P/s: mk ko copy baì của bn uyên đâu nha

16 tháng 8 2016

Ta có

\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)

=> A<-1/2

 

A= E387E4837

B = 883433

C = UỲUWFHQWURY48E3947