K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Vì mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1, SA2,.... SAn, tương ứng tại B1, B2,..., Bn nên theo định lý Talet trong từng tam giác SA1A2, …, SAn-1An thì \(\frac{{S{B_1}}}{{S{A_1}}} = \frac{{S{B_2}}}{{S{A_2}}} = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = ... = \frac{{S{B_n}}}{{S{A_n}}}\) mà S.A1A2...A là hình chóp đều nên S.B1B2...Bn cũng là một hình chóp đều.

b) Ta có \(SH \bot \left( {{A_1}{A_2}...{A_n}} \right)\) (H là tâm của đa giác A1A2...An)

Mà \(\left( {{A_1}{A_2}...{A_n}} \right)//\left( {{B_1}{B_2}...{B_n}} \right)\)

\( \Rightarrow \)\(SH \bot \left( {{B_1}{B_2}...{B_n}} \right)\)

Mà \(SK \bot \left( {{B_1}{B_2}...{B_n}} \right)\) (K là tâm của đa giác B1B2...Bn)

\( \Rightarrow \) SH trùng SK

Vậy đường thẳng SH đi qua tâm K của đa giác đều B1B2...Bn, và HK vuông góc với các mặt phẳng (A1A2...An), (B1B2...Bn)

20 tháng 7 2017

Đáp án D

30 tháng 9 2017

Đáp án D

Gọi P là hình chiếu của N xuống BK

Khi quay tứ giác ANPB quanh trục BC ta được khối trụ có thể tích V 1 = πAB 2 . BP = 2 a 3 π 3  

Lại có B P = 2 3 a ; N P = a  suy ra P K = N P 2 B P = 3 a 2  

Khi quay tam giác NKP quanh trục BC ta được khối nón có thể tích do đó V = V 1 + V 2 = 7 6 πa 3

22 tháng 5 2018

Phương pháp:

Công thức tính thể tích của khối trụ có bán kính đáy R và chiều cao h:  V = π R 2 h

Công thức tính thể tích của khối nón có bán kính đáy R và chiều cao h:  V = 1 3 π R 2 h

Cách giải:

Khi quay tứ giác ANKB quanh trục BK ta được hình trụ có bán kính đáy AB, chiều cao AN và hình nón có bán kính đáy AB, chiều cao K O = B K − A N  

a: ΔHEB vuông tại H có góc HBE=45 độ

nên ΔHEB vuông cân tại H

b: KH//AB

=>gó KHE=góc HEB=45 độ

=>ΔKHM vuôngtại K

=>KH=KM

ΔCKH vuông tại K có góc C=45 độ

nên ΔCKH vuông cân tại K

=>KC=KH=KM

=>K là trung điểm của MC

 

19 tháng 12 2019