1. Tìm số nguyên x, sao cho A=\(\frac{x+2}{x-5}\) là số nguyên dương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy số phần tử của tập hợp A là 2
\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)
\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x-6x=7+30\)
\(\Leftrightarrow x=37\)
Vậy nghiệm của phương trình là x = 37
a) \(2xy^2+x+y+1=x^2+2y^2+xy\)
\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)
\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)
\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)
\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)
Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)
Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)
Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).
Nếu x = 1 => y = 1 thỏa
Nếu x ≥ 2 thì đặt (x³ + x):(3xy - 1) = m ∈ N (vì x, y nguyên dương nên 3xy - 1 nguyên dương)
=> x³ + x = m(3xy - 1) => x² + 1 = 3my - m/x (1) => m/x = 3my - x² - 1 = p ∈ N => m = px thay vào (1) có:
x² + 1 = 3pxy - p (2) => x + 1/x = 3py - p/x => (p + 1)/x = 3py - x = q ∈ N
=> p + 1 = qx => p = qx - 1 thay vào (2) có:
x² + 1 = 3(qx - 1)xy - (qx - 1) = 3qx²y - 3xy - qx + 1
=> x + q = 3y(qx - 1) ≥ 3(qx - 1) ( vì y ≥ 1)
=> 3qx - x - q ≤ 3 <=> (3q - 1)(x - 1) ≤ 4 - 2q ≤ 2 (vì q ≥ 1)
Mà 3q - 1 ≥ 2 và x - 1 ≥ 1 => 3q - 1 = 2 và x - 1 = 1 => x = 2
thay x = 2 vào biểu thức ban đầu có 10/(6y - 1) ∈ N => y = 1
Đs: (x; y) = (1; 1); (2; 1)
\(A=\frac{x+2}{x-5}\)là số nguyên dương
\(\rightarrow x+2⋮x-5\)
Ta có:\(x-5⋮x-5\)
\(\rightarrow[\left(x+2\right)-\left(x-5\right)]⋮x-5\)
\(\rightarrow\left(x+2-x+5\right)⋮x-5\)
\(\rightarrow7⋮x-5\)\(\rightarrow x-5\inƯ\left(7\right)=\left\{1;7\right\}\)
\(x-5=1\rightarrow x=6\)
\(x-5=7\rightarrow x=12\)
Vậy x=6 hoặc x=12
thì tử chia hết cho mẫu