K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2018

Lời giải:

Ta có:
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\)

\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)

\(\Leftrightarrow S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2016-2015}{2015.2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{2016}=\frac{1007}{2016}\)

--------------------------

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}\)

\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2014}{2015}\)

\(\Leftrightarrow S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2015-2014}{2014.2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2015}=\frac{2014}{2015}\)

Vậy ta có đpcm.

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

19 tháng 5 2016

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1006}\right)\)

\(S=\frac{1}{1007}+\frac{1}{1008}+.....+\frac{1}{2012}+\frac{1}{2013}=P\)

=>S-P=0

=>(S-P)2016=0

23 tháng 2 2017

Sai rồi. Sai đề bài banhquaoeoho

28 tháng 4 2022

Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)

Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

=1−12+12−13+...+17−18=1−12+12−13+...+17−18

=1−18<1(2)=1−18<1(2)

Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1

22 tháng 4 2015

Tổng S có 50 phân số

=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.

Vậy S > 1/2

Tổng S có 50 phân số

=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.

Vậy S > 1/2

22 tháng 4 2015

\(S=\left(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}\right)\)

Có: \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)

\(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)

=> \(S>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)=> đpcm