K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

chuyển vế ta có:

\(x^2-2xy+2y^2-2x-1=x^2-2x\left(y+1\right)+2y^2-1\)

tinh penta ta có:

\(penta'=\left(y+1\right)^2-\left(2y^2-1\right)=-y^2+2y+2=-\left(y+1\right)^2+3\)

để pt có nghiệm nguyên thi penta' phai lon hon hoac bang 0

co penta' nho hon hoac bang 3

từ 2 điều trên ta có: 0 nho hon hoac bang penta' <3

theo penta' ta có \(x_1=y+1-\sqrt{-\left(y+1\right)^2+3}\)

\(x_2=y+1+\sqrt{-\left(y+1\right)^2+3}\)\

mà x nguyên, y nguyên nên ta có: 

\(\sqrt{-\left(y+1\right)^2+3}thuocZ\) =>\(-\left(y+1\right)^2+3\) la SCP

ma 0 nho hon hoac bang \(-\left(y+1\right)^2+3\) <3

=>\(-\left(y+1\right)^2+3\) =0 hoặc =1

, nếu trường hợp nào cho cả 2 nghiệm x,y nguyên thì chọn

8 tháng 5 2018

PT\(\Leftrightarrow x^2-2xy+2y^2=2x+2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2-2x=2\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(y-x\right)+1+y^2-2y+1=4\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-1\right)^2=4\)

Do x,y nguyên => Các hạng tử là số CP

Ta có các trường hợp 

(y-1)204
(x-y-1)240

+) (y-1)2=0 

=> y= 1 

=> x= 0 hoặc 4

+) (y-1)2=4

=> y= -1 hoặc 3

=> (x;y)= (2;-1);(4;3)

\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)

   \(=196-3\left(5y-7\right)^2\)

Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)

Mặt khác \(5y-7\equiv3\left(mod5\right)\)

\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)

mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)

Từ đó tính ra

\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)

\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)

\(=-75y^2+210y+49\)

\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)

\(=196-3\left(5y-7\right)^2\ge0\)

Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)

Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)

Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)

Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)

Đến đây ta xét trường hợp là ra.

7 tháng 5 2022

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25

x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0

(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0

(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4

Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)

ta có bảng:

x+1                   1                5                -1                  -5

y+1                 -5                -1                5                     1

x                       0                 4                 -2                    -6

y                     -6                  -2                 4                  0

→(x,y)ϵ{(0;−6),(4;−2)...}

 

\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)

\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)

\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)

\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)

nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\) 

                                                                ( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )

ta lập bảng :

       \(x+1\)           \(1\)         \(5\)         \(-1\)         \(-5\)
       \(y+1\)         \(-5\)          \(-1\)          \(5\)          \(1\) 
          \(x\)            \(0\)            \(4\)         \(-2\)          \(-6\) 
           \(y\)         \(-6\)          \(-2\)           \(4\)           \(0\)

\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)

20 tháng 3 2018

\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)

\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)

\(\Leftrightarrow x\ge2\)

Với \(x\ge2\)thì ta suy ra được

\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)

Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:

\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)

\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3 

6 tháng 11 2019

a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)

<=> \(x^3+x^2+x+1=4y^2+4y+1\)

<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ

=> \(x+1;x^2+1\) là 2 số lẻ (1)

Chứng minh: \(\left(x+1;x^2+1\right)=1\)

Đặt: \(\left(x+1;x^2+1\right)=d\)

=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)

=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)

=> \(2⋮d\)(2)

Từ (1) => d lẻ ( 3)

(2); (3) => d =1

Vậy  \(\left(x+1;x^2+1\right)=1\)

Có  \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương

Từ  2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương

Mặt khác \(x^2\) là số chính phương

Do đó: x = 0

Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)

Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k