Cho hai góc kề bù góc xoy và góc yoz. Gọi om ,on lần lượt là các tia phân giác cùa các góc xoy và góc yoz. Số đo cùa góc mon bằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do góc xOy và yOz kề bù
=> xOy+yOz=180 độ
=> yOz=180-110=70(độ)
b, Om là phân giác góc xOy
=> xOm= yOm=55(độ)
tương tự yOn=zOn=35(độ)
Mà mOn=yOm + yOn
=> mOn = 55+35=90(độ)
a) Trên nửa mặt phẳng bờ chứa tia zx , vì hai góc xOy và yOz là hai góc kề bù.
=> Ta có : xOy + yOz = 180 độ
=> Hay yOz = 180 - 110
=> yOz = 70 độ
b) Vì Om là tia phân giác góc xOy
=> mOy = xOm = xOy/2 = 110/2 = 55 độ
Vì On là tia phân giác góc yOz
=>nOy = nOz = yOz/2 = 70/2 = 35 độ
Vì tia Oy nằm giữa hai tia On và Om
=> nOy + yOm = mOn
=> 35 + 55 = mOn
=> 90 = mOn
Vậy góc mOn = 90 độ
a) (Làm như toán tổng tỉ)
Ta có: \(\widehat{xOy}+\widehat{yOz}=180\)độ (kề bù)
\(\Rightarrow\widehat{xOy}=180:\left(2+1\right)\times2=120\)độ
\(\Rightarrow\widehat{yOz}=180-120=60\)độ
b) Vì \(Om\)là phân giác \(\widehat{xOy}\Rightarrow\widehat{xOm}=\widehat{yOm}=\widehat{xOy}:2=120:2=60\)độ (Thật ra chỗ này còn cách khác nhưng thôi xài cái này đi ha!)
\(On\)là phân giác \(\widehat{yOz}\Rightarrow\widehat{yOn}=\widehat{nOz}=\widehat{yOz}:2=60:2=30\)độ
Ta có: \(\widehat{mOy}+\widehat{yOn}=\widehat{mOn}\)
\(\Rightarrow60+30=90\)độ (góc vuông)
Om là tia phân giác của góc xOy => xOm=mOy=\(\frac{xOy}{2}\)
On là tia phân giác của góc yOz => yOn=nOz=\(\frac{yOz}{2}\)
xOy và yOz là 2 góc kề bù=>xOy+yOz=180 độ
Om và On là tpg của xOy và yOz =>Oy nằm giữa Om và On
=>mOn=mOy+yOn=\(\frac{xOy}{2}+\frac{yOz}{2}\)=\(\frac{180}{2}\)=90 độ
Vậy mOn=90 độ.