tim x
\(\frac{x}{15}\)<\(\frac{4}{45}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\left(ĐKXĐ:x\ne1;x\ge0\right)\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x+3}}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-8+5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x-3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)
b)Để \(P< \frac{15}{4}\)thì \(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)
Ta có:\(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)
\(\Leftrightarrow\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}-\frac{15}{4}< 0\)
\(\Leftrightarrow\frac{12\sqrt{x}+32-15\sqrt{x}-30}{4\left(\sqrt{x}+2\right)}< 0\)
\(\Leftrightarrow\frac{-\left(3\sqrt{x}+2\right)}{4\sqrt{x}+8}< 0\)
Vì \(x\ge0;x\ne1\)
Do đó \(0< 4\sqrt{x}+8\)
Mà \(-\left(3\sqrt{x}+2\right)< 0\)
Vậy \(P< \frac{15}{4}\left(đpcm\right)\)
c)Ta có:\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{3\sqrt{x}+6+2}{\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}+\frac{2}{2\sqrt{x}+2}\)
\(\Leftrightarrow P=3+\frac{2}{\sqrt{x}+2}\)
Vì \(x\ge0;x\ne1\Rightarrow\frac{2}{\sqrt{x}+2}\le1\)
Do đó \(P\le4\Leftrightarrow x=1\)
Vậy Max P=4 khi x=1
P=3x+3√x−9(√x−1)(√x+2) +√x+3√x+2 −√x−2√x−1
P=3x+3√x−9(√x−1)(√x+2) +(√x+3)(√x−1)(√x+2)(√x−1) −x−4(√x−1)(√x+2)
P=3x+3√x−9+x+2√x−3−x+4(√x−1)(√x+2)
P=3x−8+5√x(√x−1)(√x+2)
P=3x−3√x+8√x−8(√x−1)(√x+2)
P=(3√x+8)(√x−1)(√x−1)(√x+2)
P=(3√x+8)(√x+2)
b)Để P<154 thì (3√x+8)(√x+2) <154
Ta có:(3√x+8)(√x+2) <154
⇔(3√x+8)(√x+2) −154 <0
⇔12√x+32−15√x−304(√x+2) <0
⇔−(3√x+2)4√x+8 <0
Vì x≥0;x≠1
Do đó 0<4√x+8
Mà −(3√x+2)<0
Vậy P<154 (đpcm)
c)Ta có:P=(3√x+8)(√x+2)
⇔P=3√x+6+2(√x+2)
⇔P=3(√x+2)(√x+2) +22√x+2
⇔P=3+2√x+2
Vì x≥0;x≠1⇒2√x+2 ≤1
Do đó
A) (x—1)2= | 1/4–1/2–3/4 |
(x—1)2= | 1/4–2/4–3/4 |
(x—1)2=|—1|
(x—1)2=1
==> (x—1)=1 hoặc (x—1)=-1
x=1+1 hoặc x—1=-1+1
x=2 hoặc x=0
b)(xx—8).(x2–15)<0
==> xx—8 <0 và x2> 0
Hay xx—8 >0 và x2<0
Mình chỉ biết tới đó thôi
\(a,\left(x-1\right)^2=\left|\frac{1}{4}-\frac{1}{2}-\frac{3}{4}\right|\)
\(\Rightarrow\left(x-1\right)^2=\left|-1\right|\)
\(\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
vậy__
b, k bt
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{9}{45}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{21}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
\(\Rightarrow x=15\)
Vậy \(x=15\).
\(\frac{7}{x}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{41\cdot45}=\frac{29}{45}\)
=> \(\frac{7}{x}+4\left(\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+....+\frac{1}{41\cdot45}\right)=\frac{29}{45}\)
=> \(\frac{7}{x}+4\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
=> \(\frac{7}{x}+4\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
=> \(\frac{7}{x}+4\cdot\frac{32}{45}=\frac{29}{45}\)
=> \(\frac{7}{x}+\frac{128}{45}=\frac{29}{45}\)
=> \(\frac{7}{x}=-\frac{11}{5}\)
Đến đây tự giải quyết :))
1)
a) \(-\frac{8}{15}< \frac{x}{45}< -\frac{2}{5}\)
Lại có: \(-\frac{8}{15}=\frac{-24}{45};-\frac{2}{5}=\frac{-18}{45}\)
=> \(-\frac{24}{45}< \frac{x}{45}< -\frac{18}{45}\)
=> -24 < x < - 18
=> x \(\in\){ - 23; -22; -21; -20 ; -19 } ( thử lại thỏa mãn )
b) \(x=\frac{-4}{3}+\frac{-7}{5}=-\frac{4.5}{3.5}+\frac{-7.3}{5.3}=-\frac{41}{15}\)
c) \(\frac{83}{x}=\frac{13}{4}+\frac{9}{10}=\frac{83}{20}\)
=> x = 20 ( thử lại thỏa mãn)
d) \(x=\frac{10}{8}+\frac{-24}{48}+\frac{105}{-120}=-\frac{1}{8}\)
e) \(\left|x-\frac{1}{2}\right|=\left|-\frac{2}{7}\right|+\frac{5}{4}\)
\(\left|x-\frac{1}{2}\right|=\frac{2}{7}+\frac{5}{4}\)
\(\left|x-\frac{1}{2}\right|=\frac{43}{28}\)
TH1: \(x-\frac{1}{2}=\frac{43}{28}\)
\(x=\frac{57}{28}\)
TH2: \(x-\frac{1}{2}=-\frac{43}{28}\)
\(x=-\frac{29}{28}\)
Ta có :
\(\frac{x+1}{49}+\frac{x+2}{48}+\frac{x+3}{47}+\frac{x+4}{46}+\frac{x+5}{45}=-5\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{49}+1\right)+\left(\frac{x+2}{48}+1\right)+\left(\frac{x+3}{47}+1\right)+\left(\frac{x+4}{46}+1\right)+\left(\frac{x+5}{45}+1\right)=-5+5\)
\(\Leftrightarrow\)\(\frac{x+50}{49}+\frac{x+50}{48}+\frac{x+50}{47}+\frac{x+50}{46}+\frac{x+50}{45}=0\)
\(\Leftrightarrow\)\(\left(x+50\right)\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\right)=0\)
Vì \(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\ne0\)
Nên \(x+50=0\)
\(\Rightarrow\)\(x=-50\)
Vậy \(x=-50\)
Chúc bạn học tốt ~
Quy đồng: mẫu số chung : 72
\(\frac{1}{18}=\frac{4}{72}\)
\(\frac{x}{12}=\frac{x}{72}\)
\(\frac{y}{9}=\frac{y}{72}\)
\(\frac{1}{4}=\frac{18}{72}\)
=>\(\frac{1}{12}=\frac{6}{72}\)
=>\(\frac{1}{9}=\frac{8}{72}\)
so sánh: \(\frac{1}{12}< \frac{1}{9}\) vì \(\frac{6}{72}< \frac{8}{72}\)
\(\Rightarrow x=1\) ; \(y=1\)
\(\frac{x}{15}<\frac{4}{45}\Rightarrow\frac{3\times x}{45}<\frac{4}{45}\)
\(\Rightarrow3\times x<4\Rightarrow3\times x=3\Rightarrow x=1\)