chứng minh phương trình sau vô nghiệm
x^4-x^3+2x^2-x+1=0
giúp mình với ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=0=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x+1=0\\x^2-x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
Ta có : x^4 - x^3 + 2x^2 - x + 1
= ( x^4 + 2x^2 + 1 ) - ( x^3 + x )
= ( x^2 + 1 )^2 - x( x^2 + 1 )
= (x^2 + 1) ( x^2 + 1 - x)
vì x^2 > 0 và x^2-x + 1 > 0
Nên pt đã cho vô nghiệm
1.
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta=\left(m+1\right)^2-4m\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3m^2+7m+1< 0\end{matrix}\right.\)
\(\Leftrightarrow m< \dfrac{7-\sqrt{61}}{6}\)
2.
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\3m^2+13m+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\-4\le m\le-\dfrac{1}{3}\end{matrix}\right.\)
Không tồn tại m thỏa mãn
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=1+(3+m)=4+m\geq 0\Leftrightarrow m\geq -4$ (chứ không phải với mọi m như đề bạn nhé)!
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=-(m+3)\end{matrix}\right.\)
$x_1, x_2\neq 0\Leftrightarrow -(m+3)\neq 0\Leftrightarrow m\neq -3$
$\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{-8}{3}$
$\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{-8}{3}$
$\Leftrightarrow \frac{-2(x_1-x_2)}{-(m+3)}=\frac{-8}{3}$
$\Leftrightarrow x_1-x_2=\frac{4}{3}(m+3)$
$\Rightarrow (x_1-x_2)^2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow 4+4(m+3)=\frac{16}{9}(m+3)^2$
$\Leftrightarrow m+3=3$ hoặc $m+3=\frac{-3}{4}$
$\Leftrightarrow m=0$ hoặc $m=\frac{-15}{4}$ (đều thỏa mãn)
\(\dfrac{x^2}{x+2}+\dfrac{4}{x-2}=\dfrac{4}{x^2-4}\)
\(\Leftrightarrow\dfrac{x^2}{x+2}+\dfrac{4}{x-2}=\dfrac{4}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x^2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2\left(x-2\right)+4\left(x+2\right)=4\)
\(\Leftrightarrow x^3-2x^2+4x+8=4\)
\(\Leftrightarrow x^3-2x^2+4x+8-4=0\)
\(\Leftrightarrow x^3-2x^2+4x+4=0\)
PT vô nghiệm vì không thể tìm được x
Vậy : ....
Ví dụ cho bạn một bài, còn lại tương tự.
a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)
\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)
Vậy phương trình vô nghiệm.
a, \(Chof\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
- Lập bảng xét dấu :
Vậy \(\left\{{}\begin{matrix}f\left(x\right)>0\Leftrightarrow x\in\left(3;4\right)\\f\left(x\right)< 0\Leftrightarrow x\in\left(-\infty;3\right)\cup\left(4;+\infty\right)\\f\left(x\right)=0\Leftrightarrow x\in\left\{3;4\right\}\end{matrix}\right.\)
b, \(f\left(x\right)=\left(x-1\right)\left(x+6\right)\)
( Làm tương tự câu a )
pt <=> x^4+x^3+x^2+x^2+x+1=0
<=> x^4+x^2+x^3+x+x^2+1=0
<=> x^2(x^2+1)+x(x^2+1)+(x^2+1)=0
<=>(x^2+x+1)(x^2+1)=0
<=> x^2+x+1=0 (Vô nghiệm)
hoặc x^2+1=0 (vô lý)
=>pt vô nghiệm
tk mk nhé
b chép sai đề r híc-.-