K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

\(A\left(x\right)=2x^2+bx+c\)

\(\Rightarrow A\left(0\right)=2.0^2+b.0+c\)

\(\Rightarrow A\left(0\right)=c\)

Mà \(A\left(0\right)=3\Rightarrow c=3\)

\(A\left(x\right)=2x^2+bx+c\)

\(\Rightarrow A\left(-1\right)=2.\left(-1\right)^2+b.\left(-1\right)+c\)

\(\Rightarrow A\left(-1\right)=2.1-b+c\)

\(\Rightarrow A\left(-1\right)=2-b+c\)

Mà \(A\left(-1\right)=0,c=3\)

\(\Rightarrow2-b+3=0\)

\(\Rightarrow5-b=0\)

\(\Rightarrow b=5-0\)

\(\Rightarrow b=5\)

Vậy \(c=3;b=5\)

7 tháng 5 2018

ta có: A(0) = 2.0^2 + b.0+c = 3

                 = 0 + 0 + c = 3

                   => c = 3

ta có: A(-1) = 2.(-1)^2 + b.(-1) + c = 0

                  = 2 -b + 3 = 0

                      2 -b        = -3

                          b       = 2 - - 3

                          b =5

KL: b = 5; c =3

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Thay x = 1 vào đa thức F(x), ta có:

F(1) = a.12 + b.1 + c = a+ b + c

Mà a + b + c = 0

Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)

b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0

Do đó, đa thức có 1 nghiệm là x = 1

30 tháng 8 2017

* Chứng minh:

Phương trình a x 2   +   b x   +   c   =   0 có hai nghiệm  x 1 ;   x 2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó : a.(x – x1).(x – x2)

= a.(x2 – x1.x – x2.x + x1.x2)

= a.x2 – a.x.(x1 + x2) + a.x1.x2

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

=   a . x 2   +   b x   +   c   ( đ p c m ) .

* Áp dụng:

a)  2 x 2   –   5 x   +   3   =   0

Có a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  3 x 2   +   8 x   +   2   =   0

Có a = 3; b' = 4; c = 2

⇒  Δ ’   =   4 2   –   2 . 3   =   10   >   0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

3 tháng 3 2022

a, Theo bài ra ta có \(\hept{\begin{cases}f\left(0\right)=c=0\\f\left(1\right)=a+b+c=2013\\f\left(-1\right)=a-b+c=2012\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2013\\a-b=2012\end{cases}}\)

Cộng vế với vế \(a+b+a-b=2013+2012\Leftrightarrow2a=4025\Leftrightarrow a=\frac{4025}{2}\)

\(\Rightarrow b=\frac{4025}{2}-2012=\frac{1}{2}\)

Vậy \(a=\frac{4025}{2};b=\frac{1}{2};c=0\)

4 tháng 4 2021

Vì f(0)=4 => c=4

=> f(x)=ax^2+bx+4

Vì f(1)=3 => a+b+4=3 => a+b=-1(1)

f(-1)=7 => a-b+4=7 => a-b =3 (2)

Từ (1),(2) => a = 1; b=-2 

=> f(x)=x^2-2x+4