B1 : Tính giá trị biểu thức :
S = \(\frac{2}{1.3}\)- \(\frac{4}{3.5}\)+ \(\frac{6}{5.7}\)- \(\frac{8}{7.9}\)+ ... - \(\frac{96}{95.97}\)+ \(\frac{98}{97.99}\)
B2 : Chứng minh rằng A = \(\frac{1}{4}\)+ \(\frac{1}{16}\)+ \(\frac{1}{36}\)+ \(\frac{1}{64}\)+ \(\frac{1}{100}\)+ \(\frac{1}{144}\)+ \(\frac{1}{196}\)+ \(\frac{1}{256}\)+ \(\frac{1}{324}\)< \(\frac{1}{2}\)
B2 : \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{114}+\frac{1}{196}+\frac{1}{256}+\frac{1}{324}\)
\(=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{18^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{4^2}< \frac{1}{2\cdot4}\)
\(\frac{1}{6^2}< \frac{1}{4\cdot6}\)
...
\(\frac{1}{18}< \frac{1}{16\cdot18}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{18^2}< \frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{16}-\frac{1}{18}\right)\)
\(\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{18^2}< \frac{1}{2}< \frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{18}\right)\)