Cho hình chữ nhật ABCD kẻ AH vuông góc với BD ( H thuộc BD) Gọi M và N lần lượt là trung điểm của HA và HD gọi K là giao điểm của BM và AN chứng minh
a) Tam giác AHB đồng dạng với tam giác DHA
b) AM . AN=DN . BM
c) KM . KB nhỏ hơn hoặc bằng AN2/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔDHA vuông tại H có
góc HAB=góc HDA
Do đó: ΔAHB đồng dạng với ΔDHA
b: Xét ΔAMB và ΔDNA có
AM/DN=AB/DA
góc BAM=góc ADN
DO đo: ΔAMB đồng dạng với ΔDNA
Suy ra: AM/DN=MB/NA
hay \(AM\cdot NA=DN\cdot MB\)
a: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
b: Xét ΔAHB vuông tại H và ΔBHE vuông tại H có
\(\widehat{HAB}=\widehat{HBE}\)
Do đó: ΔAHB\(\sim\)ΔBHE
ban tim canh MH va canh NH. Sau do chung minh tam giacAMH dong dang tam giacNHB roi suy ra canh ti le va goc de chung minh 2 tam giac do dong dang
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔCDK vuông tại C và ΔDBK vuông tại D có
góc K chung
=>ΔCDK đồng dạng với ΔDBK
=>KD/KB=KC/KD
=>KD^2=KB*KC
b: Xét ΔHAD vuông tại A và ΔHDB vuông tại D có
góc H chung
=>ΔHAD đồng dạng với ΔHDB
=>HA/HD=AD/DB
=>HA*DB=HD*AD
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔACB
a. Xét ΔABH và ΔACB có
∠A chung
∠AHB = ∠ABC = 90
⇒Đpcm
b. AD định lý PYTAGO cho ΔABC ta tính đc AC=25 cm
vì ΔABH ∼ ΔACB ⇒ BH/BC = AB/AC
thay số vào và giải
c. câu c tự cm theo định lý Talet đảo
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
=>ΔABH đồng dạng với ΔACB
b: \(AC=\sqrt{7^2+24^2}=25\left(cm\right)\)
BH=7*24/25=6,72(cm)