K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

Muốn P thuộc Z thì tử số phải chia hết cho mẫu số tức 2 - n phải chia hết cho n - 1.

Mà n-1 cũng chia hết cho n-1

Suy ra 2 - n + ( n -1) chia hết cho n -1 

2 - n + n - 1 chia hết cho n - 1

(2 - 1) + (n - n) chia hết cho n - 1

1 + 0 chia hết cho n -1 

1 chia hết cho n -1

Vậy n -1 thuộc Ư(1) = {1; -1}

Ta có:

n-1 1-1
n2

0

Vậy n thuộc {2;0}

5 tháng 5 2018

\(P=\frac{2-n}{n-1}\)

\(\Rightarrow-P=\frac{n-2}{n-1}=\frac{n-1-1}{n-1}=1-\frac{1}{n-1}\)

\(\Rightarrow P=-1+\frac{1}{n-1}\)

Để P thuộc Z

\(\Rightarrow n-1\in\left(1;-1\right)\)

\(\Rightarrow n\in\left(2;0\right)\)

Vậy...............

24 tháng 12 2016

A=n+3 chia hết cho n+1

mà n+3 =(n+1)+2

vì n+1 chia hết cho n+1

nên A chia hết cho n+1 

khi2chia hết cho n+1

suy ra n+1 thuộc ước của 2

suy ra n+1 thuộc {1;2}

mà n thuộc Z  Suy ra n thuộc { 0;1}

Câu 2 dựa theo cách trên mà tự làm 

24 tháng 12 2016

\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)

Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}

n + 1-11-22
n-20-31

\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)

Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}

n - 41-117-17
n5321-13
18 tháng 8 2016

\(A=\frac{n+1}{n-2}\\ Athu\text{ộc}Zkhin+1⋮n-2\\ =>n-2+3⋮n-2\\ =>3⋮n-2\)

=>n-2 thuộc Ư(3)={1;3;-1;-3}

=>n thuoc {3;5;1;-1}

b) A có GTLN khi n lớn nhất =>n=5

Câu b không chắc chắn

18 tháng 8 2018

a)

Để A thuộc Z thì ( dấu " : " là chia hết cho )

n + 1 : n - 2

n - 2 + 3 : n - 2

=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }

Sau đó tìm n là xong

18 tháng 8 2018

b) Cũng gần tương tự như phần a !

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)

Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất 

mà n nguyên ( theo đề bài )

=> 3 : n - 3

Ta có bảng :

n - 31-13-3
n4260

Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0

25 tháng 5 2017

Mong bạn k cho mk !!!

a) \(\frac{4}{n+1}\)

=> 4 \(⋮\)n + 1 

=> n + 1 \(\in\)Ư( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }

=> n \(\in\){ 0 ; -2 ; 1 ; -3 ; 3 ; -5 }

b) \(\frac{-27}{2n-3}\)

=> -27 \(⋮\)2n - 3

=> 2n - 3\(\in\){ 1 ; -1 ; 3 ; -3 ; 9 ; -9 ; 27 ; -27 }

=> Lập bảng :

2n - 3 1  -1  3  -3  9  -9 27 -27
  2n 4 2 6 0 12 -6 30 -24
  n 2 1 3 0 6 -3 15 -12

Vậy n \(\in\){ -12 ; -3 ; 0 ; 1 ; 2 ; 3 ; 6 ; 15 }

c)\(\frac{n+3}{n-2}\)

có : n + 3 \(⋮\)n - 2

      n - 2 \(⋮\)n - 2

=> ( n + 3 ) - ( n - 2 ) \(⋮\)( n - 2 )

=> n + 3 - n + 2 \(⋮\)n - 2

           5            \(⋮\)n - 2

=> n - 2 \(\in\)Ư( 5 ) = { 1 ; -1 ; 5 ; -5 }

=> n \(\in\){ 3 ; 1 ; 7 ; -3 }

24 tháng 5 2017

\(a.\) Để \(\frac{4}{n+1}\in Z\) thì \(4⋮n+1\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)

\(\Rightarrow n\in\left\{-2;0;1;-3;3;-5\right\}\)

\(b.\)Để \(\frac{-27}{2n-3}\in Z\) thì \(-27⋮2n-3\)

Đến đây bn tự nghĩ típ nha.

\(c.\)\(\Rightarrow n+3⋮n-2\)

\(\Rightarrow\left(n-2\right)+5⋮n-2\)

\(\Rightarrow5⋮n-2\)

Tự làm típ nha

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

20 tháng 3 2018

a, \(A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

      \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

     \(n\inℤ\Rightarrow n-2\inℤ\)

\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)

b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

để A lớn nhất thì \(\frac{3}{n-2}\) lớn nhất

\(\Rightarrow n-2\) là số nguyên dương nhỏ nhất

\(\Rightarrow n-2=1\)

\(\Rightarrow n=3\)

vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)

20 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

Để \(A\inℤ\) thì \(3⋮\left(n-2\right)\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n-2\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(3\)\(1\)\(5\)\(-1\)

Vậy \(n\in\left\{-1;1;3;5\right\}\) thì A là số nguyên 

\(b)\) Ta có : 

\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\) ( như câu a ) 

Để A đạt GTLN thì \(\frac{3}{n-2}\) phải đạt GTLN hay \(n-2>0\) và đạt GTNN 

\(\Rightarrow\)\(n-2=1\)

\(\Rightarrow\)\(n=3\)

Suy ra : \(A=\frac{3+1}{3-2}=\frac{4}{1}=4\)

Vậy \(A_{max}=4\) khi \(n=3\)

Chúc bạn học tốt ~ 

B là số nguyên thì n+1 chia hết n-2

(n+1)-(n-2)chia hết n-2

n+1-n+2chia hết n-2

3chia hết n-2

n-2 thuộc Ư(3)={-1;1;-3;3}

n thuộc {1;3;-1;5}

B=n+1/n-2=n-2+3/n-2=n-2/n-2+3/n-2=1+3/n-2

để B lớn nhất 3/n-2 lớn nhất

nên n-2 bé nhất

n-2 là số nguyên dương bé nhất

 => n-2=1

     n=3