K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

Có: \(A=\frac{1}{2}+\frac{5}{6}+...+\frac{9899}{9900}\)

\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{9900}\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(=99-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=99-\left(1-\frac{1}{100}\right)\)

\(=99-\frac{99}{100}< 99\)

\(\Rightarrow A< 99\)

4 tháng 5 2017

\(A=100\cdot\left(1+\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{19}{20}+...+\dfrac{9899}{9900}\right)\\ =100\cdot\left(1+1-\dfrac{1}{6}+1-\dfrac{1}{12}+1-\dfrac{1}{20}+...+1-\dfrac{1}{9900}\right)\\ =100\cdot\left[\left(1+1+1+...+1\right)-\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\right)\right]\\ =100\cdot\left[99-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\right)\right]\\ =100\cdot\left[99-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\right]\\ =100\cdot\left[99-\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\right]\\ =100\cdot\left[99-\dfrac{49}{100}\right]\\ =100\cdot\dfrac{9851}{100}\\ =9851\)

6 tháng 5 2017

Bạn cho hỏi làm sao biết được bao nhiêu số 1 để cộng thành 99? Cảm ơn

cái này tính cái gì thế

ko hiểu

11 tháng 4 2016

mk lam dc ma ko ranh ghi

11 tháng 4 2016

ai giup minh voi

25 tháng 4 2018

Ta có : 

\(A=100\left(1+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\right)\)

\(A=100\left(1+\frac{6-1}{6}+\frac{12-1}{12}+\frac{20-1}{20}+...+\frac{9900-1}{9900}\right)\)

\(A=100\left(1+\frac{6}{6}-\frac{1}{6}+\frac{12}{12}-\frac{1}{12}+\frac{20}{20}-\frac{1}{20}+...+\frac{9900}{9900}-\frac{1}{9900}\right)\)

\(A=100\left(1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\right)\)

\(\frac{A}{100}=1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{100}\right)\)

Do từ \(2\) đến \(99\) có \(99-2+1=98\) số nên có \(98\) số \(1\) suy ra : 

\(\frac{A}{100}=98-\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\frac{A}{100}=98-\frac{49}{100}\)

\(\frac{A}{100}=\frac{9751}{100}\)

\(A=\frac{9751}{100}.100\)

\(A=9751\)

Vậy \(A=9751\)

Chúc bạn học tốt ~ 

12 tháng 8 2016

1/2 + 5/6 + 11/12 + 19/20 + 29/30 +. . . 9701 + / 9702 + 9899/9900 = 1/2 + (1-1 / 6) + (1-1 / 12) + (1-1 / 20) + (1-1 / 30) + ...... + (1 -1/9702) + (1-1 / 9900) = 1/2 + [1 - (1 / 2-1 / 3)] + [1 - (1 / 3-1 / 4)] + [1- ( 1 / 4-1 / 5)] + [1 - (1 / 5-1 / 6)] + ...... + [1- (1 / 98-1 / 99)] + [1 - (1 / 99-1 / 100)] * 100 + 1 = 1 / 2-1 / 2 + 1 / 3-1 / 3 + 1 / 4-1 / 4 + 1 / 5-1 / 5 + 1 / 6-1 / 6 + ... ... 1 / 98-1 / 98 + 1 / 99-1 / 99 + 1/100 + 1 = 100/100 = 100 và 1/100

8 tháng 5 2017

A= ​​\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2005.2006}\)\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2005}\)-\(\frac{1}{2006}\)=

= 1-\(\frac{1}{2006}\)\(\frac{2005}{2006}\)

8 tháng 5 2017

a)Ta có:\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(\Rightarrow A=\frac{2005}{2006}\)

b)Ta có:\(\frac{2005}{2006}-1=-\frac{1}{2006}\)

        Vì \(\frac{2005}{2006}\) trừ 1 được một số âm thì chứng tỏ \(\frac{2005}{2006}\)<1

Vậy A<1