K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc OAC+góc AED=90 độ

=>góc OAC+góc AHD=90 độ

=>góc OAC+góc ABC=90 độ

=>góc OAC=góc OCA

=>OA=OC và góc OBA=góc OAB

=>OA=OB=OC

=>O là trung điểm của BC

b: góc KAB+góc OAB=90 độ

gócHAB+góc OBA=90 độ

mà góc OAB=góc OBA

nên góc KAB=góc HAB

=>AB là phân giác của góc HAK

c: ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

a: BC=BH+CH

=4+9

=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>\(AH=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(AB^2=4\cdot13=52\)

=>\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

b:

CK//AB

CA\(\perp\)AB

Do đó: CK\(\perp\)CA tại C

Xét ΔACK vuông tại C có CH là đường cao

nên \(HA\cdot HK=CH^2\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(CH\cdot HB=HA^2\)

Xét ΔAHC vuông tại H có \(AC^2=CH^2+HA^2\)

=>\(AC^2=HA\cdot HK+CH\cdot HB\)

c: Gọi M là trung điểm của BC

Ta có: ΔABC vuông tại A

=>ΔABC nội tiếp đường tròn đường kính BC

=>ΔABC nội tiếp (M)

Xét tứ giác BAEF có

\(\widehat{BFE}+\widehat{BAE}=90^0+90^0=180^0\)

Do đó: BAEF là tứ giác nội tiếp

=>\(\widehat{BAF}=\widehat{BEF}\)(1)

Ta có: AH\(\perp\)BC

EF\(\perp\)BC

Do đó: AH//EF

=>AD//EF

=>\(\widehat{ADB}=\widehat{BEF}\)(hai góc so le trong)(2)

Xét ΔCAD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAD cân tại C

=>CA=CD

Xét ΔBAD có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔBAD cân tại B

=>\(\widehat{BAD}=\widehat{BDA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{BAD}=\widehat{BAF}\)

mà \(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{BAF}=\widehat{ACB}\)

Ta có: MA=MB

=>ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{MBA}\)

=>\(\widehat{MAB}=\widehat{ABC}\)

Ta có: \(\widehat{MAF}=\widehat{MAB}+\widehat{BAF}\)

\(=\widehat{ABC}+\widehat{ACB}\)

\(=90^0\)

=>MA\(\perp\)FA tại A

Xét (M) có

MA là bán kính
FA\(\perp\)MA tại A

Do đó: FA là tiếp tuyến của (M)

hay FA là tiếp tuyến của đường tròn đường kính BC

 

25 tháng 4 2018
a)có ∆ABC cân tại A=> AB=AC(1) Mà D,E là trung điểm của AB, AC =>DA=DB, EA=EC(2).Từ (1)(2) => AD=AE. Xét ∆vuông AOD và ∆vuông AOE ta có: AO chung, AD=AE(cmt)=> ∆vuông AOD=∆vuông AOE (cạnh huyền- cạnh góc vuông) b) vì DA=DB, ID vuông góc với AB => ID là đường trung trực của AB=> IA=IB(Tính chất đường trung trực) c) Không rõ điểm K là điểm nào nên mình chịu

Giúp tớ với, tớ đang cần gấp

a)  tam giác AOE = AOD

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath