Tam giác ABC vuông tại A ,có AB=16 cm,BC=20 cm. Kẻ đường phân giác BD
a,Tính CD và AD . Từ C kẻ CH vuông góc với AD tại H ,b,Chứng minh tam giác ABD đồng dạng với tam giácHCD
c,Tính diện tích của tam giác HCD
(GIẢI GIÚP MÌNH VỚI CÀNG NHANH CÀNG TỐT)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{20^2-16^2}=12\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/4=CD/5=(AD+CD)/(4+5)=12/9=4/3
=>AD=16/3cm; CD=20/3cm
b: Xét ΔABD vuông tại A và ΔHCD vuông tại H có
góc ADB=góc HDC
=>ΔABD đồng dạng với ΔHCD
Lời giải:
a.
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-16^2}=12$ (cm)
Áp dụng tính chất tia phân giác:
$\frac{AD}{CD}=\frac{AB}{BC}=\frac{16}{20}=\frac{4}{5}$
$\Rightarrow \frac{AD}{AD+CD}=\frac{4}{9}$
$\Rightarrow \frac{AD}{AC}=\frac{4}{9}\Rightarrow AD=\frac{4}{9}AC=\frac{4}{9}.12=\frac{16}{3}$ (cm)
$CD=AC-AD=12-\frac{16}{3}=\frac{20}{3}$ (cm)
b.
Xét tam giác $ABD$ và $HCD$ có:
$\widehat{BAD}=\widehat{CHD}=90^0$
$\widehat{BDA}=\widehat{CDH}$ (đối đỉnh)
$\Rightarrow \triangle ABD\sim \triangle HCD$ (g.g)
c.
Từ kết quả tam giác đồng dạng phần b suy ra:
$\frac{S_{HCD}}{S_{ABD}}=(\frac{CD}{BD})^2(*)$
Trong đó:
$CD=\frac{20}{3}$
$BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+(\frac{16}{3})^2}=\frac{16\sqrt{10}}{3}(**)$
Từ $(*); (**)\Rightarrow \frac{S_{HCD}}{S_{ABD}}=\frac{5}{32}$
$\Rightarrow S_{HCD}=\frac{5}{32}S_{ABD}=\frac{5}{32}.\frac{AD}{AC}S_{ABC}$
$=\frac{5}{32}.\frac{16}{3.12}.\frac{AB.AC}{2}$
$=\frac{5}{32}.\frac{4}{9}.\frac{16.12}{2}=\frac{20}{3}$ (cm2)
a) Xét ΔCHA và ΔCAB ta có:
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\Rightarrow\Delta CHA\)∼\(\Delta CAB\left(g.g\right)\)
b)Xét ΔABC vuông tại A, áp dụng địn lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2\)
\(=20^2-16^2\)
\(=144\)
\(\Rightarrow AB=\sqrt{144}=12cm\)
vì ΔCHA∼ΔCAB(cmt)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AC}{CH}=\dfrac{BC}{AC}hay\dfrac{12}{AH}=\dfrac{16}{CH}=\dfrac{20}{16}=\dfrac{5}{4}\)
Suy ra:
\(AH=\dfrac{12.4}{5}=9,6cm\)
\(CH=\dfrac{16.4}{5}=12,8cm\)
Xét ΔAHC có AD là phân giác ta có:
\(\dfrac{AH}{HD}=\dfrac{AC}{DC}=\dfrac{AH+AC}{CH}hay\dfrac{9,6}{HD}=\dfrac{16}{DC}=\dfrac{16+9,6}{12,8}=2\)
\(\Rightarrow DC=\dfrac{16}{2}=8cm\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)