K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

một tí thôi mà nhiều thế

nhỉ các bạn

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

hay ΔAMN cân tại A

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

8 tháng 2

hinh đâu bẹn để mik xem có đ ko ?

13 tháng 3 2022

a) Xét \(\Delta ABH\) vuông tại H và \(\Delta ACH\text{vuông tại H}:\)

AB = AC \((\Delta ABC\text{cân tại A}).\)

\(\widehat{B}=\widehat{C}\) \((\Delta ABC\text{cân tại A}).\)

\(\Rightarrow\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn).

b) Xét \(\Delta ABC\) cân tại A:

AH là đường cao \(\left(AH\perp BC\right).\)

\(\Rightarrow\) AH là phân giác \(\widehat{BAC}.\)

c) Ta có: BH = CH = \(\dfrac{1}{2}BC=\dfrac{1}{2}8=4\left(cm\right).\)

Xét \(\Delta ABH:\)

\(AB^2=AH^2+BH^2\left(Pytago\right).\\ \Rightarrow AB^2=3^2+4^2.\\ \Rightarrow AB=5\left(cm\right).\)

Mà AB = AC (\(\Delta ABC\) cân tại A).

\(\Rightarrow AC=5\left(cm\right).\)

15 tháng 2 2022

a, Xét tam giác ABH và tam giác ACH ta có 

AB = AC (gt) 

AH _ chung

^AHB = ^AHC = 900

Vậy tam giác ABH = tam giác ACH ( ch - cgv ) 

b, Xét tam giác ABC cân tại A

AH là đường cao đồng thời là đường trung tuyến 

=> H là trung điểm BC 

c, Do H là trung điểm BC => HB = 6/2 = 3 cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\) 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔABH=ΔACH

b: HI//AB

=>góc IHA=góc BAH

=>góc IHA=góc IAH

=>ΔIAH cân tại I

c: Xét ΔBAC có

H là trung điểm của CB

HI//AB

=>I là trung điểm của AC

12 tháng 2 2022

a. xét tam giác  ABH và tam giác ACH

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )

Vậy tam giác  ABH = tam giác ACH ( c.g.c )

b. xét tam giác vuông BNH và tam giác vuông CNH

BN = CM ( AB = AC ; AM = AN )

BH = CH 

Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )

c. áp dụng định lý pitao vào tam giác vuông AHB:

\(AB^2=AH^2+BH^2\)

\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)

=> BC = BH. 2 = 8.2 =16 cm

Chúc bạn học tốt!!!

 

 

12 tháng 2 2022

a, Xét tam giác ABH và tam giác ACH 

^AHB = ^AHC = 900

AB = AC (gt) 

AH _ chung 

Vậy tam giác ABH = tam giác ACH ( ch - cgv ) 

b, Xét tam ANB và tam giác AMC có : 

^A _ chung 

AM = AN(gt) 

AB = AC (gt) 

Vậy tam giác ANB = tam giác AMC ( c.g.c ) 

=> BN = CM ( 2 cạnh tương ứng ) 

c, Xét tam giác ABH vuông tại H, theo định lí Pytago 

\(BH=\sqrt{AB^2-AH^2}=6cm\)

Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến 

=> BC = 2BH = 12 cm 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

b) Xét ΔAMD và ΔCMH có 

MA=MC(gt)

\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)

MD=MH(gt)

Do đó: ΔAMD=ΔCMH(c-g-c)

Suy ra: AD=HC(Hai cạnh tương ứng)

c) Ta có: ΔAMD=ΔCMH(cmt)

nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)

hay AD//HB

Xét tứ giác ABHD có 

AD//BH(cmt)

AD=BH(=HC)

Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB//DH(Hai cạnh đối)

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

b: Xét ΔAIH vuông tại I và ΔAKH vuông tại K có 

AH chung

\(\widehat{IAH}=\widehat{KAH}\)

Do đó: ΔAIH=ΔAKH

Suy ra: AI=AK

c: Xét ΔABC có 

AI/AB=AK/AC

Do đó: IK//BC

5 tháng 5 2022

ko biết

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>HB=HC

=>BC=2HB

ΔAHB vuông tại H nên AB^2=AH^2+HB^2

=>HB^2=5^2-4^2=9

=>HB=3(cm)

=>BC=2*3=6cm

c: Xét ΔBAK có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAK cân tại B