Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = 10cm, Đường cao SO = 12cm.
a) Vẽ hình và tính thể tích của hình chóp đều.
b) Tính diện tích xung quanh của hình chóp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
Gọi `H` là trung điểm của `CD`
\(\Rightarrow SH\perp CD\)
\(OH=\frac{1}{2}AD=\frac{1}{2}.10=5cm\)
Ta có: \(SO=12cm\)
\(\Rightarrow SH=\sqrt{SO^2+OH^2}=\sqrt{5^2+12^2}=\sqrt{169}=13cm\)
\(\Rightarrow S_{\Delta SCD}=\frac{1}{2}.SH.CD=\frac{1}{2}.13.10=65cm^2\)
\(\Rightarrow S_{xungquanh}=S_{\Delta SCD}.4=65.4=260cm^2\)
a) Áp dụng định lý Pytago, ta được:
AC2=AB2+BC2=2AB2AC2=AB2+BC2=2AB2
⇒AC=AB√2=10√2cm⇒AC=AB2=102cm
b) Gọi MM là trung điểm ABAB
⇒MA=MB=MO=5cm⇒MA=MB=MO=5cm
⇒SM⊥AB⇒SM⊥AB (ΔSAB∆SAB cân tại SS)
⇒SM=√SA2−AM2=√122−52=√119cm⇒SM=SA2−AM2=122−52=119cm
⇒SO=√SM2−OM2=√119−52=√94cm⇒SO=SM2−OM2=119−52=94cm
⇒VS.ABCD=13.SABCD.SO=13.AB2.SO=102.943=94003cm3
Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:
+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )
Do đó:
+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).
+ Diện tích toàn phần của hình chóp đều là
Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )
+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )
a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)
Lại có: SH2 = SC2 - HC2 (Pytago)
b) Gọi K là trung điểm của BC
Ta có: SK2 = SH2 + HK2 (Pytago)