chứng minh a=111...111222...2225 ( 2005 chữ số 1 và 2006 chữ số 2). chứng minh a là số chính phương.
ai giải giúp em bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=111..1000..0+222..2+3=10^{2007}\left(1+10+..+10^{2004}\right)+2.\left(1+10+..+10^{2006}\right)+3\)
\(=10^{2007}.\frac{10^{2005}-1}{9}+2.\frac{10^{2007}-1}{9}+3=\frac{10^{2.2006}-10.10^{2006}+25}{9}=\left(\frac{10^{2006}-5}{3}\right)^2\)
rõ ràng Alà số tự nhiên nên \(\left(\frac{10^{2006}-5}{3}\right)\) là số tự nhiên, vậy ta có đpcm
\(a=\dfrac{1}{9}.\left(999...9\right)=\dfrac{1}{9}.\left(100...0-1\right)=\dfrac{1}{9}\left(10^n-1\right)\)
\(b=100...0+5=10^n+5\)
\(\Rightarrow ab+1=\dfrac{1}{9}\left(10^n-1\right)\left(10^n+5\right)+1=\dfrac{1}{9}\left(10^{2n}+4.10^n+4\right)=\dfrac{1}{9}\left(10^n+2\right)^2\)
\(=\left(\dfrac{10^n+2}{3}\right)^2\)
Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\)
\(\Rightarrow10^n+2⋮3\)
\(\Rightarrow\dfrac{10^n+2}{3}\in Z\)
\(\Rightarrow\left(\dfrac{10^n+2}{3}\right)^2\) là SCP hay \(ab+1\) là SCP
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
A xp=x+x2+x^3+x^4+..................+x^2016
=>xp-p= x^2016-1 ban nhe
B ap dung dau hieu chia het cho 3 la tong chu so chia het cho 3
\(A=111.....111.10^{2017}+2222.....2222.10+5\)
\(=\frac{10^{2015}-1}{9}.10^{2017}+20.\frac{10^{2016}-1}{9}+5\)
\(=\frac{10^{4032}-10^{2017}+2.10^{2017}-20+45}{9}\)
\(=\frac{10^{4032}+2.5.10^{2016}+25}{9}\)
\(=\left(\frac{10^{2016}+5}{3}\right)^2\) là số chính phương (ĐPCM)
đề bài bảo có 2005 số 2 nên phải là 10^2006 chứ bạn, mấy cái còn lại cũng thế!