K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

Với \(x=y=2\Rightarrow A=8\)

Ta cm \(A=8\) là GTNN của \(A\)

Thật vậy ta cần chứng minh \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)

Mà \(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)

Cần chứng minh \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\Leftrightarrow\frac{\left(x+y-4\right)^2}{x+y-2}\ge0\left(x;y\ge1\right)\)

BĐT cuối cùng luôn đúng -->Min=8 khi x=y=2

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Lời giải:
ĐK phải là $x,y>1$. Nếu $x,y=1$ thì vi phạm ĐKXĐ rồi bạn nhé.

Áp dụng BĐT AM-GM cho các số dương:

\(\frac{x}{\sqrt{y}-1}+4(\sqrt{y}-1)\geq 4\sqrt{x}\)

\(\frac{y}{\sqrt{x}-1}+4(\sqrt{x}-1)\geq 4\sqrt{y}\)

Cộng theo vế và rút gọn ta có:

\(A\geq 8\)

Vậy GTNN của $A$ là $8$. Dấu "=' xảy ra khi $x=y=4$

22 tháng 3 2019

\(y=\frac{x-1+3\sqrt{x-1}+2}{x-1+4\sqrt{x-1}+3}\)

đặt x-1=a(a>=0)

=>\(y=\frac{a+3\sqrt{a}+2}{a+4\sqrt{a}+3}\)

=>\(\left(y-1\right)a+\left(4y-3\right)\sqrt{a}+3y-2=0\)

đến đây dùng pp tìm miền giá trị tìm y là ra                             

https://loga.vn/bai-viet/ve-phuong-phap-mien-gia-tri-de-tim-gtln-gtnn-4059

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

9 tháng 11 2016

a/ \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=...\)

b/ \(\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=...\)

c/ \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=...\)

d/ \(\frac{x}{3}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=...\)

e/ \(\frac{x}{1-x}+\frac{5}{x}=\frac{x}{1-x}+\frac{5-5x+5x}{x}=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=...\)

f/ \(\frac{x^3+1}{x^2}=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge2\sqrt{\frac{x}{2}.\frac{x}{2}.\frac{1}{x^2}}=...\)

g/ \(\frac{x^2+4x+4}{x}=x+\frac{4}{x}+4\ge2\sqrt{x.\frac{4}{x}}+4=...\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

8 tháng 5 2019

Áp dụng bất đẳng thức Cô - si vào 2 số dương \(x^2,\frac{1}{x^2}\)ta có:
\(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}=2\)\(\left(1\right)\)

Áp dụng bất đẳng thức Cô - si vào hai số dương \(y^2,\frac{1}{y^2}\)ta có :

\(y^2+\frac{1}{y^2}\ge2\sqrt{y^2.\frac{1}{y^2}}=2\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\ge4\)

\(\Rightarrow\)\(A_{min}=4\Leftrightarrow x=y=1\)

8 tháng 5 2019

bạn ơi x+y<=1 mà bạn tìm ra x+y=2 rồi

17 tháng 10 2020

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

17 tháng 10 2020

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)