Cho f(x) = x8 - 101x7 + 101x6 - 101x5 + ... + 101x2 -101x + 25 . Tính f(100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x=100
nên x+1=101
Ta có: \(f\left(x\right)=x^8-101x^7+101x^6-101x^5+...+101x^2-101x+25\)
\(=x^8-x^7\left(x+1\right)+x^6\left(x+1\right)-x^5\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+25\)
\(=x^8-x^7-x^7+x^7+x^6-x^6-x^5+x^5-x^4+...+x^3+x^2-x^2-x+25\)
\(=-x+25\)
\(=-100+25=-75\)
Ta có: x=100
\(\Leftrightarrow x+1=101\)
Ta có: \(f\left(x\right)=x^{10}-101x^9+101x^8-101x^7+...+101x+2021\)
\(=x^{10}-x^9\cdot\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x\left(x+1\right)+2021\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^2+x+2021\)
\(=x+2021\)
\(=100+2021=2121\)
f(100)=x8-(100+1)x7+(100+1)x6-(100+1)x5+....+(100+1)x2-(100+1)x+25
=x8-(x+1)x7+(x+1)x6-(x+1)x5+....+(x+1)x2-(x+1)x+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=25
vậy f(100)=25
f(100)=> x=100
=>x+1=101
thay x+1=101 ta được:
f(100)=x8-(x+1)x7+(x+1)x6-(x+1)x5+...+(x+1)x2-(x+1)x+25
=x8-(x8+x7)+(x7+x6)-(x6+x5)+...+(x3+x2)-(x2+x)+25
=x8-x8-x7+x7+x6-x6-x5+...+x3+x2-x2-x+25
=-x+25
=-100+25
=-75
\(x=100\Rightarrow x+1=101\)
\(f\left(x\right)=x^8-\left(x+1\right).x^7+\left(x+1\right).x^6-\left(x+1\right).x^5+....+\left(x+1\right).x^2+\left(x+1\right).x+25\)
\(f\left(x\right)=x^8-x^8-x^7+x^7+x^6-x^6-x^5+.....+x^3+x^2-x^2+x+25\)
\(f\left(100\right)=100+25=125\)