(d): y=mx-m+1
(P): y=x2
a, Chứng minh khi m thay đổi, (d) luôn đi qua 1 điểm cố định
b, Tìm m để (d) cắt (P) tại 2 điểm phân biệt nằm bên phải trục tung
Mong có lời giải hẳn hỏi!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua
=> yA = mxA + 1 với mọi m
=> xA.m + 1 - yA = 0 với mọi m
<=> xA = 0 và 1 - yA = 0
<=> xA = 0 ; yA = 1
Vậy A(0;1)
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x2 = mx + 1
<=> x2 - mx - 1 = 0
\(\Delta\) = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
Theo Vi - et ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
a, \(m=\dfrac{4}{3}\Leftrightarrow\left(d\right):y=-2:\dfrac{4}{3}\cdot x+2=-\dfrac{3}{2}+2\)
PT hoành độ giao điểm của (P) và (d) là
\(\dfrac{x^2}{2}=-\dfrac{3}{2}x+2\Leftrightarrow x^2=-3x+4\\ \Leftrightarrow x^2+3x-4=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{2}\\y=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}A\left(1;\dfrac{1}{2}\right)\\B\left(-4;8\right)\end{matrix}\right.\)
Vậy \(A\left(1;\dfrac{1}{2}\right);B\left(-4;8\right)\) là tọa độ giao điểm của (P) và (d)
b, PT hoành độ giao điểm: \(\dfrac{x^2}{2}=-\dfrac{2}{m}x+2\Leftrightarrow x^2m=-4x+4m\)
\(\Leftrightarrow x^2m+4x-4m=0\left(1\right)\\ \Delta=16-4\left(-4m\right)m=16+8m^2>0,\forall m\)
Theo Vi-ét ta có \(x_1x_2=\dfrac{-4m}{m}=-4\) với \(x_1;x_2\) là nghiệm của (1)
Do đó \(x_1;x_2\) luôn trái dấu
Vậy PT(1) luôn có 2 nghiệm phân biệt trái dấu nên (P) luôn cắt (d) tại 2 điểm M,N nằm về 2 phía of trục tung
c, Gọi \(I\left(x_0;y_0\right)\) là điểm cố định mà (d) luôn đi qua
\(\Leftrightarrow y_0=-\dfrac{2}{m}\cdot x_0+2\Leftrightarrow my_0=-2x_0+2m\\ \Leftrightarrow m\left(y_0-2\right)+2x_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow I\left(0;2\right)\)
Điểm C,D là ở đâu bạn nhỉ?
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
a: y=mx+1-2x=x(m-2)+1
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x\left(m-2\right)+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m-2\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-1}{m-2}\end{matrix}\right.\)
=>\(A\left(-\dfrac{1}{m-2};0\right)\)
=>\(OA=\dfrac{1}{\left|m-2\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(m-2\right)+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=0\left(m-2\right)+1=1\end{matrix}\right.\)
=>B(0;1)
=>OB=1
ΔOAB cân tại O
=>OA=OB
=>\(\dfrac{1}{\left|m-2\right|}=1\)
=>|m-2|=1
=>\(\left[{}\begin{matrix}m-2=-1\\m-2=1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)
b: y=mx-2x+1
Tọa độ I cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x=0\\y=-2x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=-2\cdot0+1=1\end{matrix}\right.\)
c: O(0;0); I(0;1)
=>O,I đều nằm trên trục Ox
=>Ox là đường thẳng đi qua OI và có phương trình đường thẳng là y=0
a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua
=> yA = mxA + 1 với mọi m
=> xA.m + 1 - yA = 0 với mọi m
<=> xA = 0 và 1 - yA = 0
<=> xA = 0 ; yA = 1 Vậy A(0;1)
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x^ 2 = mx + 1
<=> x 2 - mx - 1 = 0
Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath