Cho x,y,z>0
CM xy/z+xz/y+zy/x>=x+y+z
Giupa mình vơia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=4\\zx+z+x+1=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\) (1)
Nhân vế với vế
\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\pm8\)
- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\) (2) chia vế cho vế của 2 với từng pt của (1) ta được:
\(\left\{{}\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)
- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\) (2) chia vế cho vế của (2) cho từng pt của (1)
\(\Rightarrow\left\{{}\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-2\\z=-5\end{matrix}\right.\)
Áp dụng BĐT : \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2 ( a > 0 ; b > 0)
Ta có : \(\dfrac{xy}{z}+\dfrac{xz}{y}\) = \(x\left(\dfrac{y}{z}+\dfrac{z}{y}\right)\) ≥ 2x ( x > 0 ; y > 0 ; z > 0) (1)
\(\dfrac{xz}{y}+\dfrac{zy}{x}=z\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\) ≥ 2z ( x > 0 ; y > 0 ; z > 0) ( 2)
\(\dfrac{xy}{z}+\dfrac{zy}{x}=y\left(\dfrac{x}{z}+\dfrac{z}{x}\right)\) ≥ 2y ( x > 0 ; y > 0 ; z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3)
⇒\(\dfrac{xy}{z}+\dfrac{xz}{y}\) + \(\dfrac{xz}{y}+\dfrac{zy}{x}\) + \(\dfrac{xy}{z}+\dfrac{zy}{x}\) ≥ 2x + 2y + 2z
⇔ \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{zy}{x}\) ≥ x + y + z
Dễ thôi
\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\)
\(xyz(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y})\ge xyz(x+y+z)\)
\(x^2y^2+x^2z^2+y^2z^2\ge x^2yz+xz^2y+y^2zx\)\(2x^2y^2+2x^2z^2+2y^2z^2\ge2x^2yz+2xz^2y+2y^2zx\)
\((x^2y^2-2x^2yz+x^2z^2)+(y^2z^2-2y^2zx+x^2y^2)+(x^2z^2-2yz^2x+y^2z^2)\ge0\)
\(\left(xy-xz\right)^2+\left(xz-yz\right)^2+\left(yz-xy\right)^2\ge0\left(lđ\right)\)
Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\forall x\in R\)
Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)
Cộng theo vế 2 BĐT (1);(2) ta có:
\(2\left(x^2+y^2+z^2\right)+3\ge45\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge42\Rightarrow x^2+y^2+z^2\ge21\)
Khi x=y=z=1
Sửa đề : cho \(CM:x^2+y^2+z^2\ge21\)
Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xy-2xz\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)(1)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z+3\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge2x+2y+2z-3\)(2)
Cộng vế với vế của (1); (2) lại ta được :
\(2\left(x^2+y^2+z^2\right)\ge xy+yz+xy+2x+2y+2z-3\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge45-3=42\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{42}{2}=21\)(đpcm)
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Bất đẳng thức Cauchy-Schwarz
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\left(1\right)\)
\(\frac{yz}{x}+\frac{zx}{y}\ge2x\left(2\right)\)
\(\frac{yz}{x}+\frac{zx}{y}\ge2z\left(3\right)\)
Cộng vế (1) ; (2) và (3) và chia mỗi vế cho 2
\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge x+y+z\left(đpcm\right)\)