Chứng minh đa thức sau không có nghiệm:
A(x)=3x2+6x+11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
\(A=x^2+3x+3=x^2+2\cdot\frac{3}{2}\cdot x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)
=> \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) => \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> Đa thức A vô nghiệm.
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
Bài 1:
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
\(1,\\ a,=3x\left(x-3y\right)\\ b,=\left(x-5\right)^2-9y^2=\left(x-3y-5\right)\left(x+3y-5\right)\\ c,=3x\left(x-y\right)-2\left(x-y\right)=\left(3x-2\right)\left(x-y\right)\\ 2,\\ Sửa:x^2-6x+10=\left(x-3\right)^2+1\ge1>0,\forall x\)
1, =3x (2x -3y)
c, = 3x(x-y) -2(x-y)
= (3x-2)(x-y)
2, Ta có: x2 -6x+10= (x-3)2 +11
Nhận xét: (x-3)2 >= 0 với mọi số thực x
=> (x-3)2 +1 >= 1 >0 (đpcm)
Ta thấy: 3x^2 lớn hơn hoặc bằng 0 với mọi x
6x lớn hơn hoặc bằng 0 với mọi x
=> 3x^2+6x+11 >11
=> Đa thức A(x) k có nghiệm
Vậy đa thức A(x) k có nghiệm.
\(A\left(x\right)=3x^2+6x+11\)
\(A\left(x\right)=2x^2+\left(x^2+6x+11\right)\)
\(A\left(x\right)=2x^2+\left(x^2+3x+3x+3^2\right)+2\)
\(A\left(x\right)=2x^2+x\left(x+3\right)+3\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)\left(x+3\right)+2\)
\(A\left(x\right)=2x^2+\left(x+3\right)^2+2\)
Có \(2x^2\ge0\)và \(\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2\ge0\)
=> \(2x^2+\left(x+3\right)^2+2\ge2\)
=> \(2x^2+\left(x+3\right)^2+2\ne0\)
=> \(A\left(x\right)\ne0\)
Vậy đa thức \(A\left(x\right)\)không có nghiệm