Cho góc bẹt \(x\widehat{Oy}\). Gọi Ot và Oz là hai tia cùng nằm trên một nửa mặt phẳng có bờ Ox sao cho \(x\widehat{Ot=130^o}\)và \(y\widehat{Oz=100^o}\)
a) Tính số đo góc \(z\widehat{Ot}\)
b) Vì sao Ot là tia phân giác của góc \(y\widehat{Oz?}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: tia Oz nằm giữa hai tia Ox và Ot(cmt)
nên \(\widehat{xOz}+\widehat{tOz}=\widehat{xOt}\)
\(\Leftrightarrow\widehat{tOz}+70^0=125^0\)
hay \(\widehat{tOz}=55^0\)
Ta có: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)
\(\Leftrightarrow70^0+\widehat{yOz}=180^0\)
hay \(\widehat{yOz}=110^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia Oy, ta có: \(\widehat{yOt}< \widehat{yOz}\left(55^0< 110^0\right)\)
nên tia Ot nằm giữa hai tia Oy và Oz
Ta có: tia Ot nằm giữa hai tia Oy và Oz(cmt)
mà \(\widehat{yOt}=\widehat{zOt}\left(=55^0\right)\)
nên Ot là tia phân giác của \(\widehat{yOz}\)(đpcm)
a) Ta có: \(\widehat{yOt}+\widehat{xOt}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{xOt}+55^0=180^0\)
hay \(\widehat{xOt}=125^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOz}< \widehat{xOt}\left(70^0< 125^0\right)\)
nên tia Oz nằm giữa hai tia Ox và Ot(Đpcm)
a)
vì \(\widehat{xoy}< \widehat{xoz}\left(30^o< 100^o\right)\) nên tia Oy nằm giữ 2 tia Ox và Oz, ta có :
\(\widehat{xoz}=\widehat{xoy}+\widehat{yoz}\)
\(\Rightarrow\widehat{yoz}=\widehat{xoz}-\widehat{xoy}=100^o-30^o=70^o\)
vậy \(\widehat{yoz}=70^o\)
b)
ta có tia ot nằm giữa 2 tia Oy và Oz nên ta có :
\(\widehat{yoz}=\widehat{yot}+\widehat{toz}\)
\(\Rightarrow\widehat{toz}=\widehat{yoz}-\widehat{yot}=70^o-20^o=50^o\)
ta có Ot nằm giữa 2 tia Oy và Oz
vì \(\widehat{toz}=50^o\) nên \(\widehat{toz}\ne\widehat{yot}\left(50^o\ne70^o\right)\) ⇒ tia ot không phải là phân giác của \(\widehat{yoz}\)
c)
ta có tia Ot nằm giữa 2 tia Ox và Oz nên
\(\widehat{xoz}=\widehat{xot}+\widehat{toz}\)
\(\Rightarrow\widehat{xot}=\widehat{xoz}-\widehat{toz}=100^o-50^o=50^o\)
vì tia Ot nằm giữa 2 tia Ox và Oz
và \(\widehat{xot}=\widehat{toz}\left(=50^o\right)\) nên tia Ot là phân giác của \(\widehat{xoz}\)
a) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOy}< \widehat{xOz}\left(30^0< 100^0\right)\)
nên tia Oy nằm giữa hai tia Ox và Oz
\(\Leftrightarrow\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\)
\(\Leftrightarrow\widehat{yOz}+30^0=100^0\)
hay \(\widehat{yOz}=70^0\)
Vậy: \(\widehat{yOz}=70^0\)
Mik giải , còn bạn tự vẽ hình nha !!!!
a) Vì tia Oz , Ot cùng nằm trên một nửa mặt phẳng với bờ chứa tia Ox
Và góc xOz < góc xOt ( 35 < 70 )
Suy ra Oz nằm giữa 2 tia Ox , Ot
b) Theo bài ra ta có : Góc xOz và góc zOy là 2 góc kề bù . Suy ra : Oz nằm giữa Ox , Oy (1)
Suy ra : xOz + zOy = 180 độ ( Kí hiệu góc và độ nha )
Suy ra : zOy = 180 độ - xOz = 180 độ - 35 độ = 145 độ . Suy ra : xOz < zOy (2)
Từ (1) , (2) suy ra Oz không phải là tia phân giác của góc xOy
\(a.\) \(\widehat{xOz}\)kề bù với \(\widehat{zOy}\)
Vì \(\widehat{xOz}\)kề bù với \(\widehat{zOy}\) suy ra \(\widehat{xOz}+\widehat{zOy}=180^0\)
\(\Rightarrow\) \(50^0+\widehat{zOy}=180^0\)
\(\Rightarrow\) \(\widehat{zOy}=180^0-50^0=130^0\)
\(b.\)Trên cùng một nửa mặt phẳng bờ là tia \(Oy\)
có \(\widehat{zOy}>\widehat{tOy}\) ( vì \(130^0>65^0\))
nên tia \(Ot\)nẳm giữa 2 tia \(Oy\)và \(Oz\)
\(c.\)Ta có: \(\widehat{xOz}+\widehat{zOt}+\widehat{tOy}=180^0\) \(\Rightarrow\) \(50^0+\widehat{zOt}+65^0=180^0\)
\(\Rightarrow\) \(\widehat{zOt}=65^0\)
\(d.\) Ta thấy tia \(Ot\)nẳm giữa 2 tia \(Oy\)và \(Oz\)
và \(\widehat{zOt}=\widehat{tOy}=\frac{\widehat{zOy}}{2}=65^0\)
nên tia \(Ot\)la2 tia phân giác của \(\widehat{zOy}\)
a) vì tia Ox và Oz cùng nằm trên nửa mặt phẳng mà góc xOt < góc xOz ( 40 độ ; 110 độ) => tia Ot nằm giữa
=> zOt + tOx = zOx
=> zOt = zox - tox
=> zot = 110 - 40
=> zot = 70
b)
Có góc xOt + góc yOt=180' (2 gocke bu)
130' + góc yOt =180'
goc yOt=180'-130'
gocyOt=50'
Có góc yOt+góc tOz=góc yOz(Ot nằm giữa Oz và Oy)
50'+goctOz=100'
góc tOz=100'-50'
góc tOz=50'
b,co gocyOt=goc tOz=50'
suy ra Ot là phân giác của xOy