các cao nhân cho em hỏi làm sao chứng minh BĐT Bunhiacopxki dạng phổ thông đc ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xài bđt phụ mới cần phải chứng minh nhé
mà tau nhớ làm gì có Cô si dạng Engel ??? ._.
Chứng minh \(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}với\left(x;y;z>0\right)\)
Thường thì sẽ sử dụng cái này nhiều nhất
Đầu tiên đi chứng minh
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\\ \Leftrightarrow\dfrac{a^2y+b^2x}{xy}\ge\dfrac{a^2+2ab+b^2}{x+y}\\ \Leftrightarrow a^2xy+\left(bx\right)^2+\left(ay\right)^2+b^2xy\ge a^2xy+2abxy+b^2xy\\ \Leftrightarrow\left(ay\right)^2+\left(bx\right)^2-2abxy\ge0\Leftrightarrow\left(ay-bx\right)^2\ge0\left(đúng\right)\)
Áp dụng 1 lần nữa ta có điều ở trên
Dấu $=$ xảy ra $⇔\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}$
Trên đây nó ko cho đăng ảnh,mn chịu khó nhập link này vào nha:https://i.imgur.com/xQNntGH.png
\(y=-5\cdot\dfrac{1-cos2x}{2}+12sin2x+7\)
\(=-\dfrac{5}{2}+\dfrac{5}{2}\cdot cos2x+12\cdot sin2x+7\)
\(=12\cdot sin2x+\dfrac{5}{2}\cdot cos2x+\dfrac{9}{2}\)
\(=\dfrac{\sqrt{601}}{2}\cdot\left(\dfrac{12\cdot sin2x}{\dfrac{\sqrt{601}}{2}}+cos2x\cdot\dfrac{5}{2}\cdot\dfrac{2}{\sqrt{601}}\right)+\dfrac{9}{2}\)
\(=\dfrac{\sqrt{601}}{2}\cdot\left(sin2x\cdot cosa+cos2x\cdot sina\right)+\dfrac{9}{2}\)
\(=\dfrac{\sqrt{601}}{2}\cdot sin\left(2x+a\right)+\dfrac{9}{2}\)
\(-1< =sin\left(2x+a\right)< =1\)
=>\(\dfrac{-\sqrt{601}}{2}< =\dfrac{\sqrt{601}}{2}\cdot sin\left(2x+a\right)< =\dfrac{\sqrt{601}}{2}\)
=>\(\dfrac{-\sqrt{601}+9}{2}< =y< =\dfrac{\sqrt{601}+9}{2}\)
\(y_{min}\) khi sin(2x+a)=-1
=>\(2x+a=-\dfrac{pi}{2}+k2pi\)
=>\(2x=-\dfrac{pi}{2}-a+k2pi\)
=>\(x=-\dfrac{pi}{4}-\dfrac{a}{2}+kpi\)
\(y_{max}\) khi sin(2x+a)=1
=>\(2x+a=\dfrac{pi}{2}+k2pi\)
=>\(x=\dfrac{pi}{4}-\dfrac{a}{2}+kpi\)
Lời giải:
Cho $a_1,a_2,...,a_n>0; b_1,b_2,...,b_n>0$. Khi đó:
\(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+...+\frac{a_n^2}{b_n}\geq \frac{(a_1+a_2+....+a_n)^2}{b_1+b_2+...+b_n}\)
a: Xet ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạngvới ΔAEC
b: Xet ΔIEB vuông tại E và ΔIDC vuông tại D có
góc EIB=góc DIC
=>ΔIEB đồng dạng với ΔIDC
K D H A B C
a) Xét tam giác ADC và tam giác BKC có:
\(\hept{\begin{cases}\widehat{C}\text{ chung}\\\widehat{BKC}=\widehat{ADC}\left(=90^{\text{o}}\right)\end{cases}}\Rightarrow\Delta ADC\approx\Delta BKC\)(g-g)
b) Xét tam giác BDM và tam giác BDH có :
\(\hept{\begin{cases}BD\text{ chung}\\\widehat{BDM}=\widehat{BDH}\left(=90^{\text{o}}\right)\\MD=DH\end{cases}}\Rightarrow\Delta BDM=\Delta BDH\left(c.g.c\right)\)
=> \(\widehat{BMD}=\widehat{BHD}\left(\text{góc tương ứng}\right)\)
=> \(\Delta MBH\text{ cân tại B}\)
c) Xét tam giác AHK và tam giác BMD có :
\(\hept{\begin{cases}\widehat{BMD}=\widehat{AHK}\left(=\widehat{BHD}\right)\\\widehat{BDM}=\widehat{HKA}\left(=90^{\text{o}}\right)\end{cases}\Rightarrow\Delta AKH\approx\Delta BMD\left(g-g\right)}\)
=> \(\Rightarrow\widehat{DBM}=\widehat{KAH}\text{ hay }\widehat{CBM}=\widehat{CAM}\)
Phổ thông?Có phải dạng này không nhỉ?
`(ax+by)^2<=(a^2+b^2)(x^2+y^2)`
`<=>a^2x^2+b^2y^2+2axby<=a^2x^2+a^2y^2+b^2x^2+b^2y^2`
`<=>a^2y^2-2axby+b^2x^2>=0`
`<=>(ay-bx)^2>=0` luôn đúng
Dấu "=" `<=>ay=bx<=>a/x=b/y`
vg ạ e cảm ơn