K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

A B C H M P Q I K R E F G

Gọi E và F lần lượt là giao điểm của tia BA và CA với PC và PB.

Dựng đỉnh thứ tư của hình chữ nhật BACG.

Do tứ giác BACG là hình chữ nhật nên A;G và trung điểm M của BC thẳng hàng

Mà P;A;M thẳng hàng => P;A;G thẳng hàng.

Dễ thấy FA//BG (Quan hệ song song vuông góc)

Áp dụng ĐL Thales cho \(\Delta\)BGP: \(\frac{PF}{FB}=\frac{PA}{AG}\)(1)

Tương tự ta có: \(\frac{PE}{EC}=\frac{PA}{AG}\)(2)

Từ (1) và (2) => \(\frac{PF}{FB}=\frac{PE}{EC}\)=> EF // BC (ĐL Thales đảo) \(\Rightarrow\frac{EA}{AB}=\frac{FA}{AC}\)(Hệ quả ĐL Thales) (3)

Ta có: \(\frac{FA}{IQ}=\frac{AC}{IH}=\frac{AB}{IB}\)(Hệ quả ĐL Thales) Suy ra: \(\frac{FA}{AC}=\frac{IQ}{IH}\)(4)

Tương tự ta cũng có tỉ lệ: \(\frac{EA}{AB}=\frac{RK}{KH}\)(5)

Từ (3);(4) và (5) => \(\frac{IQ}{IH}=\frac{RK}{KH}\). Áp dụng ĐL Thales đảo cho \(\Delta\)RHQ => IK//QR (đpcm).

10 tháng 4 2020

Gọi E là giao của AC và PB, F là giao của AB và PC

Qua P kẻ đường thẳng d song song với BC

Giả sử E và F lần luợt là giao của AC và AB với d

Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'

Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)

Gọi I là giao của HQ và AB; K là giao của HR và AC

Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)

\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK

Từ (1) => PM _|_ QR hay PA _|_ QR

Gọi S là giao RA và PB

\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)

có tam giác BHQ đồng dạng với tam giác AHE 

=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp

Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)

Từ (1) (2) => A là trực tâm tam giác PQR

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

5 tháng 9 2018

vì tứ giác FMEH có góc F = 90 độ; H = 90 độ; E = 90 độ.

\(\Rightarrow\)góc M = 90 độ

\(\Rightarrow FH//ME ; FM//HE\)

\(\Rightarrow\)tứ giác FMEH là hình chữ nhật 

\(\Rightarrow\)ME=FH

a ) tứ giác MFHE có :

\(\widehat{MFH}+\widehat{FHE}+\widehat{HEM}+\widehat{EMF}=360^o\)( tính chất tổng các góc trong tứ giác )

hay \(90^o+90^o+90^o+\widehat{EMF}=360^o\)

\(\Rightarrow\widehat{EMF}=360^o-90^o-90^o-90^o\)

\(\Rightarrow\widehat{EMF}=90^o\)

\(\Rightarrow FM\perp ME\left(dhnb\right)\)

mà \(HE\perp ME\left(gt\right)\)

\(\Rightarrow FM//HE\left(\perp\rightarrow//\right)\)

\(\Rightarrow FHEM\)là hình thang

\(\widehat{MFH}=\widehat{EMF}\left(=90^o\right)\)

\(\Rightarrow FHEM\)là hình thang cân

\(\Rightarrow ME=FH\)( tính chất cạnh trong hình thang cân )

b ) kẻ EF

có M là trung điểm của BC ( gt )

\(\Delta ABC\)cân tại A ( gt )

\(\Rightarrow AM\)là đường cao

\(\Rightarrow AM\)cũng là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAM}=\widehat{CAE}\)\(hay\widehat{DAM}=\widehat{EAM}\)

xét \(\Delta MAD\)và \(\Delta MCE\)

\(\hept{\begin{cases}\widehat{ADM}=\widehat{AEM}=90^o\\AMchung\\\widehat{DAM}=\widehat{EAM}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta MAD=\Delta MCE\left(ch-gn\right)\)

\(\Rightarrow AD=AE\)( 2 cạnh tương ứng )

xét \(\Delta ADK\)và \(\Delta AEK\)có :

\(\hept{\begin{cases}AMchung\\\widehat{DAK}=\widehat{EAK}\left(cmt\right)\\AD=AE\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta ADK=\Delta AEK\left(c-g-c\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}\)( 2 góc tương ứng )

mà \(\widehat{AKD}+\widehat{AKE}=180^o\left(kb\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp DK\left(dhnb\right)\)

AM là đường cao \(\Rightarrow AM\perp BC\)

\(\Rightarrow DK//BC\)

\(hayBK//MC\)

\(\Rightarrow MDKC\)là hình thang

7 tháng 4 2022

thầy lâm ơi ra giải hộ anh Sanata ah

em ko bt làm

7 tháng 4 2022

Hảo =))

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

12 tháng 1 2022

Giúp với 3h nộp rồi

a: Xét tứ giác AKHI có 

\(\widehat{AKH}=\widehat{AIH}=\widehat{KAI}=90^0\)

Do đó: AKHI là hình chữ nhật

b: Xét tứ giác AEBM có 

D là trung điểm của AB

D là trung điểm của EM

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

=>ΔAIB=ΔAIC

b: ΔABC cân tại A

mà AI là trung tuyến

nên AI vuông góc CB

c: Xét ΔABM và ΔACN co

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

29 tháng 12 2023

a: Xét tứ giác AIHK có

\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)

=>AIHK là hình chữ nhật

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>BC=20(cm)

ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)

c: Xét ΔBHD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBHD cân tại B

=>BH=BD

Xét ΔCEH có

CK là đường cao

CK là đường trung tuyến

Do đó: ΔCEH cân tại C

=>CH=CE

BC=BH+CH

mà BH=BD và CH=CE

nên BC=BD+CE

27 tháng 12 2023

a. Tứ giác AIHK là hình vuông.

Vì tam giác ABC vuông tại A, nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Do đó, AH cắt BC thành hai đoạn bằng nhau, tức là BH = CH.

Vì DI = IH và EK = KH, nên ta có DI = IH = EK = KH.

Do đó, AI = AH + IH = AH + DI = AH + EK = AK.

Vậy tứ giác AIHK là hình vuông.

 

b. Kẻ trung tuyến AM biết AB = 12 cm, AC = 16 cm. Ta cần tính AM.

Trung tuyến AM chia đôi đoạn BC, nên BM = MC.

Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:

AB^2 + AC^2 = BC^2

12^2 + 16^2 = BC^2

144 + 256 = BC^2

400 = BC^2

BC = √400

BC = 20 cm

 

Vì BM = MC, nên BM = MC = BC/2 = 20/2 = 10 cm.

 

Vậy AM = AB + BM = 12 + 10 = 22 cm.

 

c. BC = BD + CE

Vì DI = IH và EK = KH, nên BD = DI và CE = EK.

Do đó, BC = BD + CE = DI + EK = DI + KH = DI + IH = DI + DI = 2DI.

 

Vậy DI = BC/2.