K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

a) Ta có y=f(x)=−1/2x+3y=f(x)=−1/2x+3.

Với y=−1/2x+3y=−1/2x+3 thay các giá trị của xx vào biểu thức của yy, ta được:

+) f(−2,5)=−1/2.(−2,5)+3f(−2,5)=−1/2.(−2,5)+3

=(−0,5).(−2,5)+3=(−0,5).(−2,5)+3=1,25+3=4,25=1,25+3=4,25

+)  f(−2)=−1/2.(−2)+3f(−2)=−1/2.(−2)+3

 =(−0,5).(−2)+3=1+3=4=(−0,5).(−2)+3=1+3=4.

 +) f(−1,5)=−1/2.(−1,5)+3f(−1,5)=−1/2.(−1,5)+3

=(−0,5).(−1,5)+3=(−0,5).(−1,5)+3=0,75+3=3,75=0,75+3=3,75.

 +) f(−1)=−1/2.(−1)+3f(−1)=−1/2.(−1)+3

=(−0,5).(−1)+3=0,5+3=3,5=(−0,5).(−1)+3=0,5+3=3,5.

+) f(−0,5)=−1/2.(−0,5)+3f(−0,5)=−1/2.(−0,5)+3

=(−0,5).(−0,5)+3=(−0,5).(−0,5)+3=0,25+3=3,25=0,25+3=3,25.

 +) f(0)=−1/2.0+3f(0)=−1/2.0+3=(−0,5).0+3=0+3=3=(−0,5).0+3=0+3=3

 +) f(0,5)=−1/2.0,5+3f(0,5)=−1/2.0,5+3

=(−0,5).0,5+3=(−0,5).0,5+3=−0,25+3=2,75=−0,25+3=2,75

 +) f(1)=−1/2.1+3f(1)=−1/2.1+3

=(−0,5).1+3=−0,5+3=2,5=(−0,5).1+3=−0,5+3=2,5.

+) f(1,5)=−1/2.1,5+3f(1,5)=−1/2.1,5+3

=(−0,5).1,5+3=−0,75+3=(−0,5).1,5+3=−0,75+3=2,25=2,25

+)  f(2)=−1/2.2+3f(2)=−1/2.2+3

=(−0,5).2+3=−1+3=2=(−0,5).2+3=−1+3=2.

 +) f(2,5)=−1/2.2,5+3f(2,5)=−1/2.2,5+3

=(−0,5).2,5+3=−1,25+3=(−0,5).2,5+3=−1,25+3=1,75=1,75

Ta có bảng sau:

b)

Nhìn vào bảng giá trị của hàm số ở câu a ta thấy khi xx càng tăng thì giá trị của f(x)f(x) càng giảm. Do đó hàm số nghịch biến trên R



 

5 tháng 7 2021

a)

x -2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5
y=-\dfrac{1}{2} x+3 4,25 4 3,75 3,5 3,25 3 2,75 2,5 2,25 2 1,75
 

b) Khi x lần lượt nhận các giá trị tăng lên thì giá trị tương ứng của hàm số lại giảm đi. Vậy hàm số đã cho nghịch biến trên \mathbb{R}.

 

15 tháng 11 2018

Sau khi tính giá trị của mỗi giá trị theo các giá trị của x đã cho ta được bảng sau:

x -2,5 -2,25 -1,5 -1 0 1 1,5 2,25 2,5
y = 0,5x -1,25 -1,125 -0,75 -0,5 0 0,5 0,75 1,125 1,25
y = 0,5x + 2 0,75 0,875 1,25 1,5 2 2,5 2,75 3,125 3,25
14 tháng 6 2021

+) Thay giá trị của xx vào biểu thức của hàm số y=0,5xy=0,5x, ta được:

f(−2,5)=0,5.(−2,5)=−1,25f(−2,5)=0,5.(−2,5)=−1,25.

 f(−2,25)=0,5.(−2,25)=−1,125f(−2,25)=0,5.(−2,25)=−1,125.

f(−1,5)=0,5.(−1,5)=−0,75f(−1,5)=0,5.(−1,5)=−0,75.

f(−1)=0,5.(−1)=−0,5f(−1)=0,5.(−1)=−0,5.

f(0)=0,5.0=0f(0)=0,5.0=0.

f(1)=0,5.1=0,5f(1)=0,5.1=0,5.

f(1,5)=0,5.1,5=0,75f(1,5)=0,5.1,5=0,75.

f(2,2,5)=0,5.2,25=1,125f(2,2,5)=0,5.2,25=1,125.

f(2,5)=0,5.2,5=1,25f(2,5)=0,5.2,5=1,25.

+) Thay giá trị của xx vào biểu thức của hàm số y=0,5x+2y=0,5x+2, ta được:

f(−2,5)=0,5.(−2,5)+2=−1,25+2=0,75f(−2,5)=0,5.(−2,5)+2=−1,25+2=0,75.

f(−2,25)=0,5.(−2,25)+2=−1,125+2=0,875f(−2,25)=0,5.(−2,25)+2=−1,125+2=0,875.

f(−1,5)=0,5.(−1,5)+2=−0,75+2=1,25f(−1,5)=0,5.(−1,5)+2=−0,75+2=1,25.

f(−1)=0,5.(−1)+2=−0,5+2=1,5f(−1)=0,5.(−1)+2=−0,5+2=1,5.

f(0)=0,5.0+2=0+2=2f(0)=0,5.0+2=0+2=2.

f(1)=0,5.1+2=0,5+2=2,5f(1)=0,5.1+2=0,5+2=2,5.

f(1,5)=0,5.1,5+2=0,75+2=2,75f(1,5)=0,5.1,5+2=0,75+2=2,75.

f(2,2,5)=0,5.2,25+2=1,125+2=3,125f(2,2,5)=0,5.2,25+2=1,125+2=3,125.

f(2,5)=0,5.2,5+2=1,25+2=3,25f(2,5)=0,5.2,5+2=1,25+2=3,25.

Vậy ta có bảng sau:


b)

Khi xx lấy cùng một giá trị của xx thì giá trị của hàm số y=0,5x+2y=0,5x+2 lớn hơn giá trị của hàm số y=0,5xy=0,5x là 22 đơn vị.



 

14 tháng 6 2021

a)

x-2,5-2,25-1,5-1011,52,252,5
y=0,5x-1,25-1,125-0,75-0,500,50,751,1251,25
y=0,5x+20,750,8751,251,522,52,753,1253,25

b) Với các giá trị biến x như nhau thì hàm số y=0,5x+2 luôn lớn hơn hàm số y=0,5x hai đơn vị

11 tháng 8 2017

a) Sau khi tính giá trị của mỗi giá trị theo các giá trị của x đã cho ta được bảng sau:


b) Nhận xét: Cùng một giá trị của biến x, giá trị của hàm số y = 0,5x + 2 luôn luôn lớn hơn giá trị tương ứng của hàm số y = 0,5x là 2 đơn vị.

15 tháng 10 2017

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

 

2 tháng 2 2019

Giải bài tập Toán 9 | Giải Toán lớp 9

30 tháng 7 2019

Giải bài tập Toán 9 | Giải Toán lớp 9

25 tháng 3 2019

Giải bài tập Toán 9 | Giải Toán lớp 9

23 tháng 5 2018

Giải bài tập Toán 9 | Giải Toán lớp 9

25 tháng 4 2018

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hàm số đã cho là hàm số nghịch biến trên R vì khi giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi.