K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)

=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 1) chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 2 chia hết cho d

Mà 2n + 1 lẻ => d lẻ => d = 1

=> ƯCLN(2n + 1; 2n + 3) = 1

Chứng tỏ ...

21 tháng 8 2016

Chứng tỏ rằng (2n+1) và (2n+3) là cặp số nguyên tố cùng nhau với mọi số tự nhiên n.

Gọi d = ƯCLN(2n + 1; 2n + 3) (d thuộc N*)

=> 2n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2 chia hết cho d

Mà 2n + 1 lẻ => d lẻ => d = 1

=> ƯCLN(2n + 1; 2n + 3) = 1

CHứng tỏ

26 tháng 9 2023

Gọi d là ước chung lớn nhất của 2 số. Nhiệm vụ của ta là chứng minh d=1.

a) 2n+3, n+2 \(⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

b) n+1, 3n+4

\(\Rightarrow\left(3n+4\right)-3\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\)

c) 2n+3, 3n+4

\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

26 tháng 9 2023

𝓪, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(2n+3,n+2\right)=d\)

\(\Rightarrow2n+3⋮d\)  

\(\Rightarrow n+2⋮d\Rightarrow2.\left(n+2\right)⋮d\Rightarrow2n+4⋮d\)

\(\Rightarrow2n+4-2n+3⋮d\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(2n+3,n +2\right)=1\)

𝓥𝓪̣̂𝔂 \(2n+3,n+2\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾

 

1 tháng 11 2015

a) Gọi d là UCLN ( n ; n+1 )                    

n+1 chia hết cho d                                             

n chia hết cho d                                               

-> n+1-n chia hết cho d                                 

-> 1chia hết cho d

=>N và n+1 là 2 số nguyên tố cùng nhau

=>ĐPCM                                       

1 tháng 11 2015

Còn mấy câu còn lại đâu

 

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

22 tháng 12 2021

Gọi (2n+1, n+1) = d (d thuộc N*)

⇒⎧⎨⎩2n+1⋮dn+1⋮d⇒⎧⎨⎩2n+1⋮d2n+2⋮d⇒{2n+1⋮dn+1⋮d⇒{2n+1⋮d2n+2⋮d

⇒(2n+2)−(2n+1)⋮d⇒(2n+2)−(2n+1)⋮d

⇒2n+2−2n−1⋮d⇒2n+2−2n−1⋮d

⇒1⋮d⇒1⋮d

Mà d thuộc N*

nên d = 1

=> (2n+1, n+1) = 1

=> 2n + 1 và n + 1 là 2 số nguyên tố cùng nhau  (đpcm)

30 tháng 8 2023

b: Gọi d=ƯCLN(2n+1;n+1)

=>2n+1 chia hết cho d và n+1 chia hết cho d

=>2n+2 chia hết cho d và 2n+1 chia hết cho d

=>2n+2-2n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

30 tháng 8 2023

Bạn tham khảo nhé 

a: Gọi d=ƯCLN(6n+5;2n+1)

=>6n+5-3(2n+1) chia hết cho d

=>2 chia hết cho d

mà 2n+1 lẻ

nên d=1

=>ĐPCM

b: Gọi d=ƯCLN(14n+3;21n+4)

=>42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

d: Gọi d=ƯCLN(3n+7;n+2)

=>3n+7 chia hết cho d và n+2 chia hết cho d

=>3n+7-3n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

17 tháng 10 2021

L:

a) Gọi d là UCLN ( n ; n+1 )                    

n+1 chia hết cho d                                             

n chia hết cho d                                               

-> n+1-n chia hết cho d                                 

-> 1chia hết cho d

=>N và n+1 là 2 số nguyên tố cùng nhau

=>ĐPCM                                       

^HT^

17 tháng 10 2021

cảm ỏn nha