K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

b: ta có: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: Ta có: \(\widehat{ABC}+\widehat{ABD}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

=>\(\widehat{ADB}=\widehat{AEC}\)

=>\(\widehat{ADC}=\widehat{AEB}\)

a: Xet ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE
BD=CE

=>ΔABD=ΔACE
=>AD=AE

b: ΔABC cân tại A
mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC
=>ΔAHB=ΔAKC

d: Xét ΔAED có

AH/AD=AK/AE

nên HK//DE

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A 

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc DAE
c: Xet ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH=góc CAK

=>ΔAHB=ΔAKC

d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE

4 tháng 2 2017

Hình thì Wii tự vẽ nhé.

1/ Ta có:\(AH⊥MN\) (giả thuyết)

AH là phân giác trong của  \(\widehat{A}\)(giả thuyết)

\(\Rightarrow AH\) vừa là đường cao vừa là đường phân giác của \(\widehat{A}\) trong \(\Delta MAN\)

\(\Rightarrow\Delta MAN\)cân tại A

\(\Rightarrow MH=HN=\frac{MN}{2}\)

\(\Rightarrow AN^2=AH^2+HN^2=AH^2+\frac{MN^2}{4}\)

2/ Từ B kẽ BK // CN

\(\Rightarrow\widehat{BKM}=\widehat{ANM}\)

Mà \(\widehat{AMN}=\widehat{ANM}\)(do \(\Delta MAN\)cân tại A)

\(\Rightarrow\widehat{BKM}=\widehat{AMN}\)

\(\Rightarrow\Delta MBK\) cân tại B

\(\Rightarrow BM=BK\left(1\right)\)

Xét \(\Delta BKD\)và \(\Delta CND\)

\(\widehat{KBD}=\widehat{NCD}\)(hai góc so le trong)

\(BD=DC\)(gt)

\(\widehat{BDK}=\widehat{CDN}\)

\(\Rightarrow\Delta BKD=\Delta CND\)

\(\Rightarrow BK=CN\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BM=CN\)

3/ Ta có: \(\widehat{FMN}=\widehat{FMA}+\widehat{AMN}=90+\widehat{AMN}\)

\(\widehat{MAI}=\widehat{MHA}+\widehat{AMN}=90+\widehat{AMN}\)

\(\Rightarrow\widehat{FMN}=\widehat{MAI}\left(3\right)\)

Xét  \(\Delta FMN\)và \(\Delta MAI\)

\(FM=MA\)(gt)

\(\widehat{FMN}=\widehat{MAI}\)(theo 3)

\(MN=AI\)

\(\Rightarrow\Delta FMN=\Delta MAI\)

8 tháng 12 2015

a) Xét tam giác ABI và tam giác ACI có:            AB=AC

                                                                   AI là cạnh chung

                                                                   BI=IC

                                                                  =>tam giác ABI=tam giác ACI( c.c.c)

                                                      =>góc ABI=góc ACI

             b) Ta có:  MBA+ABI=180o ; ACI+ACN=180o

                    Mà ABI=ACI

 =>MBA=ACN

Xét tam giác AGM và tam giác ACN có:

AB=AC

BM=CN

MBA=ACN

=> tam giác AGM= tam giác ACN (c.g.c)

=>AM=AN( 2 cạnh tương ứng)

14 tháng 12 2020

Tìm kiếm - Kết quả tìm kiếm | Học trực tuyến

25 tháng 1 2016

hình như bài này sai đề

 

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

20 tháng 2 2023

a) Ta có: $\widehat{ABM} = \widehat{NBM}$ (vì $BN = BA$) và $\widehat{BMA} = \widehat{NMB}$ (vì BM là phân giác của $\widehat{B}$). Vậy tam giác $ABM$ và tam giác $NBM$ có hai góc bằng nhau nên chúng đồng dạng.

b) Ta có $BN = BA$, suy ra tam giác $ABN$ đều, do đó $\widehat{NAB} = 60^\circ$. Ta có thể tính được $\widehat{BAC} = 90^\circ - \widehat{CAB} = 90^\circ - \widehat{ABN} = 30^\circ$. Khi đó, $\widehat{AMC} = \widehat{A} + \widehat{BAC} = 90^\circ + 30^\circ = 120^\circ$.

Do đó, tam giác $AMC$ là tam giác cân tại $A$ vì $\widehat{AMC} = 120^\circ = 2\cdot \widehat{ABC}$ (do tam giác $ABC$ vuông tại $A$). Khi đó, $AM = MC$.

c) Ta có $\widehat{CAB} = 30^\circ$, nên tia đối của $AB$ là tia $AH$ cũng là phân giác của $\widehat{A}$. Gọi $E'$ là trên $AH$ sao cho $AE' = CN$. Khi đó, ta có thể chứng minh $E'$ trùng với $E$, tức là $E'$ nằm trên đoạn thẳng $CE$ và $CE' = EI$.

Đặt $x = BE = BC$. Ta có $AN = AB = BN = x$, do đó tam giác $ABN$ đều và $\widehat{ANB} = 60^\circ$. Khi đó, ta có $\widehat{A} + \widehat{M} + \widehat{N} = 180^\circ$, hay $\widehat{M} + \widehat{N} = 90^\circ$.

Ta có $\dfrac{AE'}{CE'} = \dfrac{AN}{CN} = 1$, do đó $AE' = CE' = x$. Khi đó, tam giác $ACE'$ đều và $\widehat{ACE'} = 60^\circ$. Ta có thể tính được $\widehat{C} = 180^\circ - \widehat{A} - \widehat{B} = 60^\circ$, nên tam giác $ABC$ đều và $AC = x$.

Do $AM = MC$, ta có $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2}$. Ta cũng có $\widehat{B} + \widehat{N} + \widehat{C} = 180^\circ$, hay $\widehat{N} = 180^\circ - \widehat{A} - \widehat{B} - \widehat{B} - \widehat{C}$

Do đó, $\widehat{N} = 180^\circ - \widehat{A} - 90^\circ - \widehat{C} = 90^\circ - \widehat{B}$

Vậy $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2} = \dfrac{\widehat{B}}{2}$

Suy ra tam giác ABM và NBM có cùng một góc ở đỉnh M, và hai góc còn lại lần lượt bằng $\dfrac{\widehat{A}}{2}$ và $\dfrac{\widehat{C}}{2}$, nên chúng đồng dạng. Do đó, ta có $ABM = NBM$.

Về phần b, do $AM = MC$, ta có $AMC$ là tam giác cân tại $M$, hay $BM$ là đường trung trực của $AC$. Vì $BN$ là đường phân giác của $\widehat{B}$, nên ta có $BM$ cũng là đường phân giác của tam giác $\triangle ABC$. Do đó, $BM$ là đường phân giác của $\widehat{BAC}$, hay $\widehat{BAM} = \widehat{MAC} = \dfrac{\widehat{BAC}}{2}$. Vậy $\widehat{BAM} + \widehat{ABM} = \dfrac{\widehat{BAC}}{2} + \dfrac{\widehat{A}}{2} = 90^\circ$, hay tam giác $\triangle ABM$ là tam giác vuông tại $B$.

Về phần c, vì $AE = CN$, ta có tam giác $\triangle AEC$ là tam giác cân tại $E$, nên $EI$ là đường trung trực của $AC$. Do đó, $\widehat{BIM} = \widehat{BIE} + \widehat{EIM} = \widehat{BCM} + \widehat{CAM} = \dfrac{\widehat{B}}{2} + \dfrac{\widehat{C}}{2}$. Tuy nhiên, ta đã chứng minh được $\widehat{MAC} = \dfrac{\widehat{B}}{2}$, nên $\widehat{BIM} = \widehat{MAC} + \dfrac{\widehat{C}}{2}$. Do đó, $B, M, I$ thẳng hàng.

20 tháng 2 2023

lớp 7 không có cách giải này.

1 tháng 5 2023

`@` `\text {dnv}`

`a,`

Xét `\Delta AMB` và `\Delta AMC`:

`\text {AB = AC} (\Delta ABC \text {cân tại A})`

`\hat {B} = \hat {C} (\Delta ABC \text {cân tại A})`

`\text {MB = MC (vì AM là đường trung tuyến)`

`=> \Delta AMB = \Delta AMC (c-g-c)`

`b,`

\(\text{Vì AM}\text{ }\cap\text{BN tại G}\)

\(\text{AM, BN đều là đường trung tuyến}\)

`->`\(\text{G là trọng tâm của }\Delta\text{ABC}\)

`@` Theo tính chất của trọng tâm trong tam giác

`->`\(\text{BG = }\dfrac{2}{3}\text{BN}\)

Mà `\text {BN = 15 cm}`

`->`\(\text{BG = }\dfrac{2}{3}\cdot15=\dfrac{15}{3}=5\text{ }\left(\text{cm}\right)\)

Vậy, độ dài của \(\text{BG là 5 cm}\).

`c,` Bạn xem lại đề!

loading...