Cho hình vuông ABCD, E bất kì trên cạnh BC. AE cắt CD tại G. EF song song với AB ( F trên BG); DE cắt BG tại K, CK cắt AB tại I, AC vuông góc với CF. CMR: AE vuông góc với IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79
Nhìn bên phải, bấm vô thống kê hỏi đáp ạ, VÀO TRANG CÁ NHÂN CỦA E Em bức xúc lắm anh chị ạ, xl mấy anh chị vì đã gây rối Thiệt tình là ko chấp nhận nổi con nít ms 2k6 mà đã là vk là ck r ạ, bày đặt yêu xa, chưa lên đại học Đây là \'tội nhân\' https://olm.vn/thanhvien/nhu140826 và https://olm.vn/thanhvien/trungkienhy79
a. AE = AF:
Δ ABE = Δ ADF vì:
AB = AD ( cạnh hình vuông)
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^)
=> AE = AF
b. Tứ gaíc EGFK là hình thoi
EG // AB và AB // FK => EG // FK (*)
=> \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong)
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF
theo giả thiết: IE = IF (2)
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**)
(*) và (**) => EGFK là hình bình hành
vì AI là trung trực của EF => EG = FG
vậy hình bình hành EGFK là hình thoi.
c. tam giác FIK đồng dạng tam giác FCE
Δ FIK ~ Δ FEC vì:
\(\widehat{F}\)chung
\(\widehat{KIF}=\widehat{ECF}\) = 1v
d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi
gọi cạnh hình vuông là a, ta có:
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi
MỌI NGƯỜI GIÚP MÌNH CÂU b VỚI Ạ!
qua đỉnh A hình bình hành ABCD vẽ đường thẳng d cắt BD, BC, CD lần lượt tại E, F, G. a. chứng minh rằng EA/EF = EG/EA b. xác định vị trí của đường thẳng d để tích EF.EG nhỏ nhất
Áp dụng định lý Thalès, ta có:
HE // BD \(\Rightarrow\frac{AH}{AD}=\frac{AE}{AB}\)(1)
EF // AC \(\Rightarrow\frac{AE}{AB}=\frac{FC}{BC}\)(2)
FG // BD \(\Rightarrow\frac{FC}{BC}=\frac{GC}{DC}\)(3)
Từ (1),(2),(3) suy ra \(\frac{AH}{AD}=\frac{GC}{DC}\Rightarrow AH.CD=AD.CG\left(đpcm\right)\)