K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

à, mình tự giải được rồi nhé. hihi

3 tháng 6 2020

mình viết nhầm=)))))

3 tháng 6 2020

\(b,\frac{10}{99}\)+\(\frac{11}{199}\)+\(\frac{12}{299}\).\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{-1}{6}\)

18 tháng 4 2021

mình ko chép lại đề nhé, sửa 2014 + 2016 thành 2014.2016

\(A=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)=2\left(\dfrac{2016-2}{6032}\right)=\dfrac{2.2018}{6032}=\dfrac{4036}{6032}=\dfrac{1009}{1508}\)

18 tháng 4 2021

\(A=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2014.2016}\)

\(=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2014.2016}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\)

\(=2.\dfrac{1007}{2016}=\dfrac{1007}{1008}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:
$A=(1+2-3-4-5)+(6+7-8-9-10)+(11+12-13-14-15)+....+(2011+2012-2013-2014-2015)+(2016+2017-2018-2019-2020)$

$=(-9)+(-14)+(-19)+....+(-2019)+(-2024)$

$=-(9+14+19+...+2019+2024)$

Số số hạng: $(2024-9):5+1=404$
$A=-(2024+9).404:2=-410666$